• Title/Summary/Keyword: On-current

Search Result 53,321, Processing Time 0.068 seconds

Effect of Electric Current on Friction Characteristics of Machine Driving Elements (기계구동 부재의 마찰특성에 미치는 전류의 영향)

  • Jun, Sung-Jae;Cho, Yon-Sang;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.339-344
    • /
    • 2002
  • Whenever moving surfaces of machine driving elements interact in air and lubricating oil, oxidization film on the surfaces are generated. It is effect to prevent friction and wear on contact area. Since the electronic current progress the oxidization of metal, if the electronic flow be regulated, the thickness of oxidization film can be regulated and friction characteristics can be improved. But the electronic current can deteriorate friction characteristics, so various characteristics must be investigated on transforming of electronic current. Therefor, using the Norton equation in this study, short current were transformed between frictional materials using ball on disk type tester. It was studied on effect of electronic current for friction characteristics.

A Study on the Transient Characteristics in 765kV Untransposed Transmission Systems (765kV 비연가 송전계통 과도 특성에 관한 고찰)

  • 안용진;강상희
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.7
    • /
    • pp.397-404
    • /
    • 2004
  • This paper describes a study of transient characteristics in 765kV untransposed transmission lines. As the 765(kV) system can carry bulk power, some severe fault on the system nay cause large system disturbance. The large shunt capacitance and small resistance of 765kv transmission line make various difficulties for its protection. These problems including current difference between sending and receiving terminals on normal power flow, low order harmonic current component in fault current and current transformer saturation due to the long DC time constant of the circuit etc. must be investigated and solved. The analysis of transient characteristics at sending terminal has been carried out for the single phase to ground fault and 3-phase short fault, etc. The load current, charging current in normal condition and line flows, fault current, THD(Total Harmonic Distortion) of harmonics, time constants have been analysed for the 765kV untransposed transmission line systems.

A Study on the Characteristic and Rising Cause of Sheath Circulating Current by Analysis and Measurement (해석 및 측정을 통한 시스순환전류 특성 및 상승원인 검토)

  • Gang, Ji-Won;Yang, Hae-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.10
    • /
    • pp.525-533
    • /
    • 2002
  • It is common to install multiple lines in the same route. Recently, excessive sheath circulating current was partially measured in underground cable systems of KEPCO. Especially, the installation type, unbalance section length between joint boxes and zero sequence current by distribution cable have an effect on the rising of sheath circulating current in the underground transmission system. If excessive current flows in sheath, sheath loss which is reduced the transmission capacity is produced. This paper describes the relation analysis of sheath circulating current and burying types. And also, a detailed analysis on rising cause and characteristic of sheath circulating current by considering various unbalanced conditions presents using analysis and measurement regarding cable systems which have the problem of excessive sheath circulation current.

A Study on Uniformity of Current Distribution in Hull Cell (Hull Cell에서 전류분포의 균일화에 관한 연구)

  • 여운관
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.6
    • /
    • pp.340-346
    • /
    • 1994
  • The method of uniforming current distribution in Hull cell are studied by using auxiliary anode, current shield bipolar electrode, and combinings bipolar electrode with current shield in order to find a way of uni-form deposition. The current density distributions are measured by each ammeter of the same inner resistance connected to divided cathode pannel respectively. The current density distributions of cathode electrode divided into five sections with 5mm width have a tendency of linear inclination, and that of twenty sections have a tendency of smoother curve than the curve of original Hull cell pannel. Their results showed lower value on the high current density portion and higher value on the low portion than that original Hull cell pannel. The current distribution in Hull cell is able to unify by using auxiliary anode, or combining bipo-lar electrode with current shield, but not efficient in using one of both individually.

  • PDF

Experiment of harmonic components in voltage on high temperature superconducting wire carrying an AC

  • Lee, Jiho;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.51-54
    • /
    • 2013
  • This paper deals with harmonic components of the voltage on high temperature superconducting wire carrying an alternating current. HTS wire is used to manufacture superconducting power applications carrying an alternating current. Typically, international standard, IEC 61788-3 is used for critical current measurement. Thus, it is not ideal that critical current criteria in dc are adapted to superconducting power devices to decide the operating current of the devices. In this paper, we confirmed odd harmonic voltage on HTS wires carrying an AC. The ratio between harmonic components and fundamental component can be significant clues to decide the critical current criteria for HTS wire and its power applications in AC circumstance.

Influence of Current Distributions on Critical Current Characteristics in a 3-conductor (전류분포가 3본-도체의 임계전류 특성에 미치는 영향)

  • Jo, Young-Ho;Ryu, Kyung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.792-794
    • /
    • 2003
  • AC loss is an important issue in the design of high-$T_c$ superconducting power cables which consist of a number of Bi-2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. In this work we have prepared a conductor composed of three Bi-2223 tapes with different critical currents. The critical current characteristics in the conductor have experimentally investigated. The results show that for uniform current distributions the conductor's critical current is proportional to the critical current of the Bi-2223 tape to which a voltage lead is attached. However it depends on the current non-uniformity parameter in the conductor rather than the tape's critical currents for nonuniform current distributions.

  • PDF

Study on Current Limiting Characteristics of a Flux-locktype SFCL using Series Connected Two Coils with Twice Triggering Operation

  • Han, Tae-Hee;Ko, Seok-Cheol;Lee, Byongjun;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.777-781
    • /
    • 2014
  • The current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) using series connected two coils with twice triggering operation, which consists of series connected two coils and two superconducting (SC) modules with the inserting resistance, was analyzed. The feature of the suggested SFCL is that it can limit the fault current by triggering either one SC module or two SC modules comprising the SFCL depending on the amplitude of the fault current. To verify the current limiting operation of the suggested SFCL, the short-circuits in the fault location with the different fault currents were tested and its useful operations were described through the analysis on the tested results.

Effects of Interferential Current Stimulation on the Peripheral Blood Velocity in Healthy Subjects (간섭전류자극이 말초 혈류속도에 미치는 영향)

  • Park Jang-Sung;Lee Jae-Hyoung
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.2
    • /
    • pp.37-42
    • /
    • 1999
  • The purpose of this study was to determine whether percutaneous interferential current stimulation on thoracic sympathetic ganglia with amplitude modulated frequency (AMF) $90\~100$ bps and subthreshold of muscle contraction for 10 minutes on peripheral blood flow velocity in healthy subjects. Thirty-seven healthy volunteers were assigned randomly into an experimental group (n=25) and a control group (n=12). the experimental group received interferential current stimulation with subthreshold of the muscle contraction of current at AMF $90\~100$ bps on $1st\~5th$ thoracic sympathetic ganglial region for 10 minutes. The control group received same handling and electode placement, but no current was applied. Using a Doppler blood flow meter, the radial arterial blood flow velocities and the pulse raters were determined for two-way analysis of variance for repeated measures on time and group. There were no significant difference between the two groups with respect to the changes in arterial blood flow velocity and pulse rate over the four measurement times. Interferential current stimulation did not change in mean blood flow velocity and pulse rate. We conclude that interferential current stimulation on the thoracic sympathetic ganglia, as used in this study, did not dilate peripheral artery. This results suggests that interferential current stimulation dose not alter the activtiy of sympathetic nerve.

  • PDF

A Computer Simulation of Injection Rate Characteristics of Solenoid Type Common Rail Injector According to Injector Driving Current Patterns (인젝터 구동 전류 패턴 변화가 솔레노이드 타입 커먼레일 인젝터 분사율 특성에 미치는 영향에 대한 컴퓨터시뮬레이션)

  • Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.114-121
    • /
    • 2019
  • The effect of injector driving current pattern on fuel injection rate of solenoid diesel common rail injector was studied by computer simulation. The time resolved fuel injection rate and injected quantity per stroke of a common rail injector driven with the five current patterns were computer simulated. The fuel injection rate and injected quantity per stroke according to the rail pressure and fuel injection period were also computer simulated. When the common rail injector was driven with the five driving current patterns of peak & hold, there was no difference in the fuel injection rate in the peak section regardless of all the current patterns of the five cases. On the other hand, the magnitude of the hold current value influenced the injection rate and injected quantity per stroke. That is, in the current pattern of three cases where the hold current value is equal to or more than a constant value of the peak current value, the fuel injection rates for the given common rail rail pressure and injection period are same one another. On the other hand, the current pattern of the two cases, in which the hold current value is smaller than a certain value, there is a large fluctuation in the fuel injection rate.

Investigation on the Loop Current in the CICC Superconducting Magnet (관내연선도체 초전도 자석에서 루프 전류의 형성에 관한 연구)

  • 김석호;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • The fast current and field ramp-up experiment was done with the superconducting magnet that is made of three non-insulated strand CICC (Cable-In- Conduit Conductor). The shunt the unbalanced current magnet enabled the unbalanced current measurement which is believed to be associated with the loop current. To explain the generation of the loop current during the current ramp up. the steady-state three strand loop current model was proposed. This model gives an explanation for the relation between the loop current and the twist geometry of the strands. According to this model. The twisr geometry and the surface contact resistance of the strand has significant influence on the generation of the loop current especially in the large superconducting magnet.

  • PDF