• Title/Summary/Keyword: On Resistance

Search Result 21,414, Processing Time 0.044 seconds

Active Damping Characteristics on Virtual Series Resistances of LCL Filter for Three-phase Grid-connected Inverter (인덕터 내부저항을 고려한 LCL 필터의 능동댐핑 특성)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.88-93
    • /
    • 2016
  • LCL filters are widely used in high-order harmonics attenuation of output currents in grid-connected inverters. However, output currents of grid-connected inverters with LCL filters can become unstable because of the resonance of the filters. Given that the characteristics of output currents in inverters mostly depend on filter performance, the exact analysis of filters by considering parasitic components is necessary for both harmonics attenuation and current control. LCL filters have three or four parasitic components: the series and/or parallel resistance of the filter capacitor and the series resistance of the two filter inductors. Most studies on LCL filters have focused on the parasitic components of the filter capacitor. Although several studies have addressed the parasitic components of the filter inductor at the inverter side, no study has yet investigated the concurrent effects of series resistance in both filter inductors in detail. This paper analyzes LCL filters by considering series resistance in both filter inductors; it proposes an active damping method based on the virtual series resistance of LCL filters. The performance of the proposed active damping is then verified through both simulation and experiment using Hardware-in-the-Loop Simulator(HILS).

Electrode Life Test of Resistance Spot Welding on Mg Alloy Using Dome Type Electrode (돔형 전극을 사용한 마그네슘 합금 저항 점용접의 전극 수명 평가)

  • Choi, Dong-Soon;Hwang, In-Sung;Kim, Dong-Cheol;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.27-31
    • /
    • 2013
  • Magnesium alloy is used on parts of aircraft and electronic equipment because of the highest specific strength among the common metal materials. Recently, studies about appling magnesium alloy sheet to automotive bodies are on the increase rapidly. For application to automotive bodies, researches about characteristics of resistance spot welding of magnesium alloy sheet are essential. Magnesium alloy has low boiling point, so getting sound bead shape is difficult when appling varies welding processes. Resistance spot welding is also particular about setting optimum welding conditions because of spatter generation, pores and cracks occurrence in nugget. And life of electrodes is very short because of alloying with copper that main material of electrodes. This requires frequent dressing and replacement of electrodes and decrease in productivity of resistance spot welding on magnesium alloy. Therefore in this study, for effective analysis of changes in tensile shear load and nugget size during electrode life test, evaluate detail characteristics of resistance spot welding on magnesium alloy sheet using dome type electrode.

Effect of Hydrophobizing Method on Corrosion Resistance of Magnesium Alloy with Plasma Electrolytic Oxidation (소수성 처리 방법에 따른 플라즈마 전해 산화 처리된 마그네슘 합금의 내식성)

  • Joo, Jaehoon;Kim, Donghyun;Jeong, Chanyoung;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.96-102
    • /
    • 2019
  • Magnesium and its alloys are prone to be corroded, thus surface treatments improving corrosion resistance are always required for practical applications. As a surface treatment of magnesium alloys, plasma electrolytic oxidation (PEO), creating porous stable oxide layer by a high voltage discharge in electrolyte, enhances the corrosion resistance. However, due to superhydrophilicity of the porous oxide layer, which easily allow the penetration of corrosive media toward magnesium alloys substrate, post-treatments inhibiting the transfer of corrosive media in porous oxide layer are required. In this work, we employed a hydrophobizing method to enhance the corrosion resistance of PEO treated Mg alloy. Three types of hydrophobizing techniques were used for PEO layer. Thin Teflon coating with solvent evaporation, self-assembled monolayer (SAM) coating of octadecyltrichlorosilane (OTS) based on solution method and SAM coating of perfluorodecyltrichlorosilane (FDTS) based on vacuum method significantly enhances corrosion resistance of PEO treated Mg alloy with reducing the contact of water on the surface. In particular, the vacuum based FDTS coating on PEO layer shows the most effective hydrophobicity with the highest corrosion resistance.

Studies on the Resistance to Antibiotics in Bacteria Induced Resistance to Macrolide Antibiotics in Bacillus sp. (세균의 항생물질 내성에 관한 연구 Macrolide계 항생물질에 대한 유도 내성 Bacillus속 세균)

  • 최응칠;김병각;심미자;정경수;김혜령;이종길
    • YAKHAK HOEJI
    • /
    • v.26 no.3
    • /
    • pp.169-174
    • /
    • 1982
  • Several strains of bacteria having resistance to macrolide antibiotics were isolated. EMR-1, one of them, exhibited the induced resistance to macrolide antibiotics and this microorganism was identified as a bacterium belong to Bacillus species. The subinhibitory concentration of erythromycin or oleandomycin induced strong resistance to both erythromycin and oleandomycin themselves and to other macrolide antibiotics such as leucomycin, spiramycin and josamycin. The effective concentration of inducer, erythromycin was $0.0016-0.2\mu$g/ml. The inactivating enzyme of these antibiotics was not produced by EMR-1.

  • PDF

A Study on Characteristic Improvement of IGBT with P-floating Layer

  • Kyoung, Sinsu;Jung, Eun Sik;Kang, Ey Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.686-694
    • /
    • 2014
  • A power semiconductor device, usually used as a switch or rectifier, is very significant in the modern power industry. The power semiconductor, in terms of its physical properties, requires a high breakdown voltage to turn off, a low on-state resistance to reduce static loss, and a fast switching speed to reduce dynamic loss. Among those parameters, the breakdown voltage and on-state resistance rely on the doping concentration of the drift region in the power semiconductor, this effect can be more important for a higher voltage device. Although the low doping concentration in the drift region increases the breakdown voltage, the on-state resistance that is increased along with it makes the static loss characteristic deteriorate. On the other hand, although the high doping concentration in the drift region reduces on-state resistance, the breakdown voltage is decreased, which limits the scope of its applications. This addresses the fact that breakdown voltage and on-state resistance are in a trade-off relationship with a parameter of the doping concentration in the drift region. Such a trade-off relationship is a hindrance to the development of power semiconductor devices that have idealistic characteristics. In this study, a novel structure is proposed for the Insulated Gate Bipolar Transistor (IGBT) device that uses conductivity modulation, which makes it possible to increase the breakdown voltage without changing the on-state resistance through use of a P-floating layer. More specifically in the proposed IGBT structure, a P-floating layer was inserted into the drift region, which results in an alleviation of the trade-off relationship between the on-state resistance and the breakdown voltage. The increase of breakdown voltage in the proposed IGBT structure has been analyzed both theoretically and through simulations, and it is verified through measurement of actual samples.

Support working resistance determined on top-coal caving face based on coal-rock combined body

  • Cheng, Zhanbo;Yang, Shengli;Li, Lianghui;Zhang, Lingfei
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.255-268
    • /
    • 2019
  • Taking top-coal caving mining face (TCCMF) as research object, this paper considers the combination of top-coal and immediate roof as cushion layer to build the solution model of support resistance based on the theory of elastic foundation beam. Meanwhile, the physical and mechanical properties of coal-rock combination influencing on strata behaviors is explored. The results illustrate that the subsidence of main roof in coal wall increases and the first weighting interval decreases with the increase of top-coal and immediate roof thicknesses as well as the decrease of top-coal and immediate roof elastic modulus. Moreover, the overlying strata reflecting on support has negative and positive relationship with top-coal thickness and immediate roof thickness, respectively. However, elastic modulus has limit influence on the dead weight of top-coal and immediate roof. As a result, it has similar roles on the increase of total support resistance and overlying strata reflecting on support in the limit range of roof control distance. In view of sensitive analysis causing the change of total support resistance, it can be regards as the rank of three components as immediate roof weight > overlying strata reflecting on support > top coal weight. Finally, combined with the monitoring data of support resistance in Qingdong 828, the validity of support resistance determined based on elastic foundation beam is demonstrated, and this method can be recommended to adopt for support type selecting in TCCMF.

Consumers' knowledge and attitudes toward antibiotic resistance (항생제 내성에 대한 소비자의 지식 및 태도)

  • Chae, Su-Mi;Park, Eun-Ja;Park, Sylvia
    • Health Policy and Management
    • /
    • v.21 no.3
    • /
    • pp.365-380
    • /
    • 2011
  • This study was conducted to investigate the association between socio-demographic factors and attitudes toward antibiotic resistance and consumer's knowledge on antibiotic use for common cold. Telephone survey was conducted between June 24 and July 2, 2009, among 1,015 adults who were randomly stratified by age, sex and area. A total of 921 respondents were included in the analysis. Logistic regression was used to analyze the influence of socio-demographic factors on knowledge and attitudes. A total of 452 respondents(49.1%) recognised that they knew about antibiotic resistance and 769 respondents(83.5%) worried that antibiotic resistance is a serious problem in Korea. A total of 577 respondents(62.7%) had adequate knowledge on antibiotic use and resistance. Multiple logistic regression showed that younger age and higher education level were associated with adequate knowledge. The odds ratio of appropriate knowledge among persons with college degrees was 5.25(95% CI, 2.78-9.90) compared to those with elementary or less education. Sex and income variable were not predictors of adequate knowledge on antibiotic use and resistance. This study showed that consumers with less education had inadequate knowledge on antibiotic use for common cold. Even though consumers in their 40s and 50s thought they knew about antibiotic resistance, there is a need to improve their knowledge. Education campaigns for appropriate antibiotic use have to be differentiated among consumers with different socio-demographic characteristics.

Analysis of Pile Behaviors with Friction Resistance of Skin of Steel Pipe Pile in Ground where Settlement is Predicted (침하가 예측되는 지반에서 강관말뚝 주면 마찰 저항에 따른 말뚝의 거동 분석)

  • Lee, Kicheol;Shin, Sehee;Lee, Haklin;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.107-117
    • /
    • 2020
  • Open-ended steel pipe piles have outside frictional force and inside frictional resistance in which blocked soil acts on the inside of the steel pipe during installation. It is expected that the ultimate load will change depending on the inside and outside resistance. And, if the ground on which the piles were constructed is clay soil, it is predicted that it will have effect on the negative skin friction caused by the ground settlement. Therefore, in this study, the behavior according to the inside and outside resistance characteristics of steel pipe piles was analyzed numerically, and the frictional force distribution, axial load and settlements before and after the occurrence of ground settlement were calculated. As a result of the analysis, the inside frictional resistance had less influence than the outside frictional resistance. However, inside frictional resistance is considered to be one of the important factors considering the effect on the overall pile behavior, and both resistance factors need to be considered in the design process.

The Structural Relationships among Innovation Characteristics, Consumer Characteristics, Innovation Resistance, and Intention to Acceptance of Wearable Device Customers: Based on Innovation Resistance Model and Theory of Perceived Risk (웨어러블 디바이스 소비자의 혁신특성, 소비자특성, 혁신저항, 그리고 수용의도와의 구조적 관계: 혁신저항모형과 인지된 위험이론을 기반으로)

  • Bae, Jae Kwon
    • The Journal of Information Systems
    • /
    • v.25 no.4
    • /
    • pp.87-104
    • /
    • 2016
  • Purpose As the smartphone market arrived at its saturation, from world leading information and communications technologies (ICT) businesses to startups, companies are competing to develop innovative wearable device products and suitable contents. Utility, technology, design, price, and various killer contents development targeting every customer's need should be considered for a success in the wearable device market. Design/methodology/approach Prior studies on innovation technology of ICT field have mainly focused on the innovation diffusion theory, expectation confirmation theory, and technology acceptance model, this study suggested the innovation resistance factors of adopting the smart wearable devices based on the innovation resistance model and theory of perceived risk. The model comprises the following two characteristics factors: 1) innovation characteristics which include perceived relative advantages, perceived compatability, perceived complexity, and perceived risk, 2) consumer characteristics which include attitudes towards innovation and existing products (i.e., mobile devices and analog watches). This study developed an extended innovation resistance model to explain the intention to acceptance of wearable devices consumers and collected 284 online survey responses from the non-consumers of the wearable devices. Findings The findings of this study suggest that perceived relative advantage, perceived compatibility, perceived complexity, perceived risk, attitudes towards innovation and attitudes towards existing analog watches affected the innovation resistance which has negative influence on the intention to adoption of wearable devices.