• Title/Summary/Keyword: On Resistance

Search Result 21,498, Processing Time 0.061 seconds

Effect of Combined Exercise on Lung Function, Blood Vitamin D, Calcium and Bone Metabolism Hormones in Elderly Women (복합운동이 여성노인의 폐기능, 혈중 비타민 D, 칼슘 및 골대사호르몬에 미치는 영향)

  • Ki, Min-Jae;Ha, Soo-Min;Kim, Jung-Sook;Koh, Su-Han;Kim, Ji-Sun;Kim, Do-Yeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.699-710
    • /
    • 2020
  • The purpose of this study was to investigate the effect of combined exercise on lung function, blood vitamin D, calcium and bone metabolism hormones in elderly women who are over 65 years by dividing them into a combined exercise group(n=13), control group(n=17). The combined exercise program included 60-minutes sessions 3times each week. Aerobic exercise intensity was 40-50%HRR(RPE 12-13) for 1-4 week, 50-60%HRR(RPE 13-14) for 5-8 week, and 60-70%HRR(RPE 14-15) for 9-12 week and resistance exercise intensity was set at OMNI-RES 3-4 for 1-4 week, OMNI-RES 5-6 for 5-8 week, OMNI-RES 7-8 for 9-12 week. As a result, lung function indicated that FEV1 showed an interaction effect between group and time and FVC/FEV1 levels significantly increased in combined exercise group. Blood vitamin D showed an interaction effect between group and time, also, significantly increased in combined exercise group and control group. Calcium showed an interaction effect between group and time, and significantly decreased in control group. Bone metabolism hormones indicated that both calcitonin and osteocalcin showed an interaction effect between group and time, osteocalcin significantly decreased in control group. For the following this conclusion, elderly women can be improved their lung function through 12 weeks combined exercise and also mitigate the blood vitamin D but there was no meaningful results of calcium and bone metabolism hormones.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Occurrence and Distribution of ALS Inhibiting Herbicide Resistant Paddy Weeds by Using Soil Test in Chungcheongbuk-Do of Republic of Korea (토양검정법을 활용한 충북지역 ALS 저해제 제초제 저항성 논잡초 발생 현황)

  • Lee, Chae Young;Choi, Ye Seul;Lee, Hee Doo;Kim, Young Ho;Hong, Seong Taek;Woo, Sun Hee;Lee, Jeongran
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2018
  • This study was conducted to investigate the occurrence of an acetolactate synthase (ALS) inhibiting herbicide resistant weed on paddy at 289 sites by soil sampling in Chungcheongbuk-Do of Republic of Korea from February to April in 2017. The most dominant weed was Monochoria vaginalis and Echinochloa oryzicola on each city and county. ALS inhibiting herbicide resistant ratio and occurrence area were 80.6% and 28,272 ha, respectively, in Chungcheongbuk-Do which was 3 times than in 5 years ago. The herbicide resistant ratio, Okcheon-Gun was the highest at 93.8%, Chungju-Si, Boeun-Gun, Yeongdong-Gun, Jincheon-Gun and Geosan-Gun were over 80%, Cheongju-Si, Eumseong-Gun and Jeungpyeong-Gun were over 70%. The herbicide resistant area, Cheongju-Si had the largest at 6,957 ha, Chungju-Si was 4,277 ha, Jincheon-Gun and Boeun-Gun was 3,536 ha and 3,282 ha, respectively. By weed, ALS inhibiting herbicide resistant ratio and occurrence area, Monochoria vaginalis was 49%, 17,646 ha, Echinochloa oryzicola 44%, 15,617 ha, Schoenoplectiella juncoides 29%, 10,377 ha, respectively. In all cities and counties of Chungcheongbuk-Do, Monochoria vaginalis and Echinochloa oryzicola are more than 40% resistant to ALS inhibiting herbicides, intensive management is required. The use of sulfonylurea herbicides is increasing, most farmers use herbicides 10 days after transplanting, so management after transplanting is necessary and the occurrence of herbicide resistant weeds should be reduced by alternating herbicide application every year.

Effect of long-term organic matter application on physico-chemical properties in rice paddy soil -2. The effect of some physical properties of paddy field by the long-term application of rice straw and compost (논토양(土壤)의 이화학적(理化學的) 성질(性質)에 미치는 유기물(有機物)의 연용효과(蓮用效果) -II. 생고(生藁) 및 퇴비(堆肥) 연용(蓮用)이 논토양(土壤)의 몇가지 물리적(物理的) 성질(性質)에 미치는 영향(影響))

  • Yoo, Chul-Hyun;Kim, Jong-Gu;Park, Keong-Ho;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.373-379
    • /
    • 1988
  • This experiment was carried out to investigate the effects of long-term applications of rice straw and compost on the physical and mechanical properties of paddy fields and the yearly variation of rice yield in Fluvio-Marine plain of Jeonbug series. Amounts of rice straw and compost applied in this experiment were 500kg/10a, 1,000kg/10a respectively, and the nitrogen levels were 0, 15 and 20kg/10a. This experiment were continued for 9 years from 1979 to 1987. The results are summarized as follows: 1. Clay and silt ratios were decreased but versa in sand ratio, by the long-term application of rice straw and compost. 2. Bulk density in the long-term application of organic matter was lower in surface soil of non-application than nitrogen application (15kg/10a) and in rice straw than compost. 3. Solid ratio went down, but liquid and gaseous ratio went up especially, by organic matter application liquid ratio were increased by compost and gaseous ratio were increased by in rice straw. 4. Aggregates of bigger than 2mm were increased by long-term application of organic matter, and the effects was better in rice straw than compost. Accumulative aggregate of 2mm was 66.5% in nitrogen of 15kg/ 10a with rice straw, which showed the increase of 9.1% in comparison with the non-application of nitrogen and organic matter. 5. Liquid limit, plastic limit and plastic index were high in order of rice straw, compost and control, and liquid index was lower in compost than in rice straw. 6. Cole value was higher in vertical than horizontal and highest in the application of rice straw with nitrogen of 15kg/10a. Cone and shearing resistance were lowest in the application of rice straw with nitrogen. In total vertical pressure friction was higher in the long-term application of organic matter than control. 7. The change of yield index was higher in the long-term application of compost than rice straw in non-nitrogen and it showed the yearly competitive variation between the long-term application of compost and rice straw in nitrogen of 10kg/10a. In nitrogen application of 20kg/10a, it was increased from 6th year by rice straw application.

  • PDF

Effects of Unripened Cheese Supplements on Lipid and Antioxidant Status in Hypercholesterolemic SD Rats (고콜레스테롤혈증 흰쥐에서 비숙성치즈의 보충섭취가 지질 및 항산화 체계에 미치는 영향)

  • Seo, Bo-Young;Spengler, Bernhard;Rompp, Andreas;Schober, Yvonne;Yoon, Yoe-Chang;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • The aim of this study was to evaluate the effects of unripened cheese supplements on lipid metabolism and antioxidant status in hypercholesterolemic SD rats. Rats were induced to have hypercholesterolemia by feeding them high cholesterol diet (0.5% cholesterol and 0.2% sodium cholate) for 4 weeks and then divided into 2 groups. One group was fed a high cholesterol diet with 5% unripened cheese (URC) daily for 6 weeks, and the other one was fed a high cholesterol diet without 5% unripened cheese (URC) daily for 6 weeks. Significantly-increased plasma total cholesterol (TC), triglycerides (TG), and AST activity because of the high-cholesterol diet were reduced 18.8%, 40.5%, and 33%, respectively, by URC supplementation. Also, URC lowered hepatic total lipids, TCs, and TGs, whereas fecal lipid profiles were not changed by URC. The supplementation of URC resulted in an increase of plasma retinol and ${\alpha}$-tocopherol by 40.5% and 39.2% and leukoytic DNA resistance to oxidative stress by 52.3% compared to hypercholesterolemic control. These results suggest that unripened cheese supplements could exert significant health benefits to those with hypercholesterolemia through ameliorating lipid profiles and antioxidant effects.

Reliability Based Stability Analysis and Design Criteria for Reinforced Concrete Retaining Wall (신뢰성(信賴性) 이론(理論)에 의한 R.C.옹벽(擁壁)의 안정해석(安定解析) 및 설계규준(設計規準))

  • Cho, Tae Song;Cho, Hyo Nam;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.71-86
    • /
    • 1983
  • Current R.C. retaining wall design is bared on WSD, but the reliability based design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the cantilever retaining wall, which is most common type of retaining wall, and also proposes the theoretical bases of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis and design of each part of cantilever retaining wall are derived and the uncertainty measuring algorithms of each equation are also derived by MFOSM using Coulomb's coefficient of the active earth pressure and Hansen's bearing capacity formula. The levels of uncertainties corresponding to these algorithms are proposed appropriate values considering our actuality. The target reliability indices (overturning: ${\beta}_0$=4.0, sliding: ${\beta}_0$=3.5, bearing capacity: [${\beta}_0$=3.0, design for flexure: [${\beta}_0$=3.0, design for shear: ${\beta}_0$=3.2) are selected as optimal values considering our practice based on the calibration with the current R.C. retaining wall design safety provisions. Load and resistance factors are measured by using the proposed uncertainties and the selected target reliability indices. Furthermore, a set of nominal safety factors, allowable stresses, and allowable shear stresses are proposed for the current WSD design provisions. It may be asserted that the proposed LRFD reliability based design criteria for the R.C. retaining wall may have to be incorporated into the current R.C. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

Effects of Regular Treadmill Running on GLUT4 Protein of Skeletal Muscle in STZ-diabetic Rats (STZ-당뇨 흰쥐에서 규칙적인 Treadmill운동이 골격근 제 4 형 당수송체에 미치는 영향)

  • Kim, Jong-Yeon;Bae, Hyung-Il;Park, So-Young;Kim, Yong-Woon;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.15 no.2
    • /
    • pp.341-349
    • /
    • 1998
  • The purpose of this study was to investigate the effects of regular treadmill running on GLUT4 protein of skeletal muscle in STZ-diabetic rats. I used 19 male Sprague-Dawley rats weighing 140 to 160 grams. Rats were randomly assigned into normal, diabetes(DM) and DE(DE) groups. The exercise was loaded with treadmill running for 5 days per week during 4 weeks. All experimental procedures were carried out following overnight fasting 48 hours after last exercise. Gain(gm) in body weight in DM rats(822.4) was lowered compared to normal rats(1092.8), and decreased by exercise. Plasma glucose concentration(mg/dl) in DM rats was 1433.1 which is higher than that of normal group of 1036.4. The concentration of DE group was lower than that of DM rats. Plasma insulin concentration(${\mu}U/ml$) of DM and DE rats was significantly lowerd compared to normal rats. There was no difference of plasma concentrations of FFA and HDL cholesterol among noraml, DM and DE groups. Plasma triglyceride concentration(mg/dl) was significantly highered in DM group compared to those of DM group, the concentration of DE group was lower. Glycogen concentration(mg/gm wet weight) of the plantaris muscle in DM and DE groups was significantly reduced compared to normal group. Glucose transporter 4(GLUT4) protein of soleus was analyzed by Western blot. In DM group, the GLUT4 protein level was markdly decreased compared to normal group, but the level was recovered to the level of normal group by 4 weeks treadmill running. In conclusion, the insulin resistance induced by STZ administration was partially improved by 4 weeks physical training in rats.

  • PDF

A 10b 200MS/s 75.6mW $0.76mm^2$ 65nm CMOS Pipeline ADC for HDTV Applications (HDTV 응용을 위한 10비트 200MS/s 75.6mW $0.76mm^2$ 65nm CMOS 파이프라인 A/D 변환기)

  • Park, Beom-Soo;Kim, Young-Ju;Park, Seung-Jae;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.60-68
    • /
    • 2009
  • This work proposes a 10b 200MS/s 65nm CMOS ADC for high-definition video systems such as HDTV requiring high resolution and fast operating speed simultaneously. The proposed ADC employs a four-step pipeline architecture to minimize power consumption and chip area. The input SHA based on four capacitors reduces the output signal range from $1.4V_{p-p}$ to $1.0V_{p-p}$ considering high input signal levels at a low supply voltage of 1.2V. The proposed three-stage amplifiers in the input SHA and MDAC1 overcome the low output resistance problem as commonly observed in a 65nm CMOS process. The proposed multipath frequency-compensation technique enables the conventional RNMC based three-stage amplifiers to achieve a stable operation at a high sampling rate of 200MS/s. The conventional switched-bias power-reduction technique in the sub-ranging flash ADCs further reduces power consumption while the reference generator integrated on chip with optional off-chip reference voltages allows versatile system a locations. The prototype ADC in a 65nm CMOS technology demonstrates a measured DNL and INL within 0.19LSB and 0.61LSB, respectively. The ADC shows a maximum SNDR of 54.BdB and 52.4dB and a maximum SFDR of 72.9dB and 64.8dB at 150MS/S and 200MS/s, respectively. The proposed ADC occupies an active die area of $0.76mm^2$ and consumes 75.6mW at a 1.2V supply voltage.

Development of dry milling suitable rice cultivar to invigorate rice processing products

  • Jeung, Ji-Ung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.10-10
    • /
    • 2017
  • Rice consumption has been continuously decreasing as the eating habits of Koreans have become westernized and diversified. The per capita annual rice consumption in Korea has dropped sharply from 136.4 kg in 1970 to 61.9 kg in 2016. The Korean government, therefore, has been trying to promote rice consumption by invigorating the processed food industry using rice flour. To facilitate the market for processed rice foods, it is essential to develop proper milling technology in terms of flour particle size and damaged starch content to produce high quality rice flour at competitive cost. Dry milling and wet milling are the two major processes used to produce rice flour. Although the dry milling process is relatively simple with a lower production cost, damaged starch content increases because of the high grain hardness of rice. In wet milling, the quality of rice flour is improved by reducing flour particle size as well as damaged starch content through soaking procedures. However, the production costs are high because of the additional expenses associated with the disposal of waste water, sterilization and drying of the wet flour. Recently developed technologies such as jet milling and cryogenic milling also require expensive investment and production. Therefore, developing new rice cultivars with dry milling adaptability as well as good processing properties is an important goal of rice breeding in Korea. 'Suweon 542' is a floury endosperm mutant line derived from sodium azide treatment on a high-yield, early maturing, and non-glutinous japonica rice cultivar, 'Namil'. Compared with the wild type, after dry milling process, the grain hardness of 'Suweon 542' was significantly lower because of its round and loosely packed starch granules. Also, the flour of 'Suweon 542' had significantly smaller particles and less damaged starch than 'Namil' and other rice cultivars and its particle size distribution was similar to a commercial wheat cultivar. Recently, through collaborations with nine universities and food companies, a total of 21 kinds of processed prototypes, using the dry milling flour of 'Suweon 542', were evaluated. In the production of major rice processing products, there was no significant quality difference between the flours prepared by wet milling and dry milling. Although the amount of water added to the dough was slightly increased, it was confirmed that the recipe applying the wet flour could be used without significant change. To efficiently transfer the floury endosperm characteristics of 'Suweon 542' to other commercial rice cultivars, it is essential to develop DNA marker tightly linked to the target gene. Association analysis using 70 genome-wide SSR markers and 94 F2 plants derived from 'Suweon 542'/'Milyang 23' showed that markers on chromosome 5 explained a large portion of the variation in floury grains percentage (FGP). Further analysis with an increased number of SSR markers revealed that the floury endosperm of 'Suweon 542' was directed by a major recessive locus, flo7(t), located in the 19.33-19.86 Mbp region of chromosome 5, with RM18639 explaining 92.2% of FGP variation in the F2 population. Through further physical mapping, a co-segregate and co-dominant DNA marker with the locus, flo7(t) was successfully developed, by which, thereby, breeding efficiency of rice cultivars having proper dry milling adaptability with high yield potential or useful functional materials would be improved. 'Suweon 542' maintained the early maturity of the wild type, Namil, which can be used in rice-wheat double cropping systems in Korea not only for improved arable land but also for sharing flour production facilities. In addition to the high susceptibility against major rice diseases, nevertheless, another possible drawback of 'Suweon 542' is the high rate of viviparous under prolonged rainfall during the harvesting season. To overcome susceptibility and vivipary of 'Suweon 542', the progeny lines, derived from the crosses 'Suweon 542' and 'Jopyeong', an early maturing rice cultivar with multiple resistance against rice blast, bacterial blight, and rice strip virus, and 'Heugjinju', a anthocyanin pigment containing black rice cultivar, were intensively evaluated. As the outputs, three dry milling suitable rice elite lines, 'Jeonju614', 'Jeonju615', and 'Jeonju616' were developed.

  • PDF

The Comparison of the Solar Radiation and the Mean Radiant Temperature (MRT) under the Shade of Landscaping Trees in Summertime (하절기 조경용 녹음수 수관 하부의 일사와 평균복사온도 비교)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.5
    • /
    • pp.22-30
    • /
    • 2014
  • The purpose of this study was to compare the Solar Radiation(SR) and the Mean Radiant Temperature(MRT) under the shades of the three landscaping trees in clear summer daytimes. The trees were Lagerstroemia indica, Quercus palustris and Ulmus parvifolia. The solar radiation, the globe temperature and the air temperature were recorded every minute from the $1^{st}$ of April to the $30^{th}$ of September 2013 at a height of 1.1m above on the four monitoring stations, with four same measuring system consisting of a solar radiation sensor, two resistance temperature detectors(Pt-100), a black brass globe (${\phi}50mm$) and data acquisition systems. At the same time, the sky view photos were taken automatically hourly by three scouting cameras(lens angle: $60^{\circ}$) fixed at each monitoring station. Based on the 258 daily sky view photos and 6,640 records of middays(10 A.M.~2 P.M.) from the $1^{st}$ of June to the $30^{th}$ of August, the time serial differences of SR and MRT under the trees were analysed and compared with those of open sky, The major findings were as follows; 1. The average ratio of sky views screened by the canopies of Quercus palustris, Lagerstroemia indica and Ulmus parvifolia were 99%, 98% and 97%, and the SR were $106W/m^2$, $163W/m^2$ and $202W/m^2$ respectively, while the SR of open sky was $823W/m^2$. Which shows the canopies blocked at least 70% of natural SR. 2. The average MRT under the canopies of Quercus palustris, Lagerstroemia indica and Ulmus parvifolia were $30.34^{\circ}C$, $33.34^{\circ}C$ and $34.77^{\circ}C$ respectively, while that of open sky was $46.0^{\circ}C$. Therefore, it can be said that the tree canopies can reduce the MRT around $10{\sim}16^{\circ}C$. 3. The regression test showed significant linear relationship between the SR and MRT. In summary, the performances of the landscaping shade trees were very good at screening the SR and reducing the MRT at the outdoor of summer middays. Therefore, it can be apparently said that the more shade trees or forest at the outdoor, the more effective in conditioning the outdoor space reducing the MRT and the useless SR for human activities in summertime.