• Title/Summary/Keyword: Omega Method

Search Result 1,003, Processing Time 0.029 seconds

Evaluation of the fabrications and properties of ultra-thin film for memory device application (메모리소자 응용을 위한 초박막의 제작 및 특성 평가)

  • Jeong, Sang-Hyun;Choi, Haeng-Chul;Kim, Jae-Hyun;Park, Sang-Jin;Kim, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.169-170
    • /
    • 2006
  • In this study, ultra thin films of ferroelectric vinylidene fluoride-trifluoroethylene (VF2-TrFE) copolymer were fabricated on degenerated Si (n+, $0.002\;{\Omega}{\cdot}cm$) using by spin coating method. A 1~5 wt% diluted solution of purified vinylidene fluoride-trifluoroethylene (VF2:TrFE=70:30) in a dimethylformamide (DMF) solvent were prepared and deposited on silicon wafers at a spin rate of 2000~5000rpm for 30 seconds. After annealing in a vacuum ambient at $200^{\circ}C$ for 60 min, upper gold electrodes were deposited by vacuum evaporation for electrical measurement. X-ray diffraction results showed that the VF2-TrFE films on Si substrates had $\beta$-phase of copolymer structures. The capacitance on $n^+$-Si(100) wafer showed hysteresis behavior like a butterfly shape and this result indicates clearly that the dielectric films have ferroelectric properties. The typical measured remnant polarization (2Pr) and coercive filed (EC) values measured using a computer controlled a RT-66A standardized ferroelectric test system (Radiant Technologies) were about $0.54\;C/cm^2$ and 172 kV/cm, respectively, in an applied electric field of ${\pm}0.75\;MV/cm$.

  • PDF

A study on Synthesis and Radiation Detector Fabrication of Thin Films by MW Plasma CVD (MWPECVD에 의한 박막의 합성과 방사선 검출 특성에 관한 연구)

  • Koo, Hyo-Geun;Lee, Duck-Kyu;Song, Jae-Heung;Noh, Kyung-Suk;Park, Sang-Hyun
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.45-50
    • /
    • 2004
  • Synthesis diamond films have been deposited on the molybdenum substrates using an microwave plasma enhanced chemical vapor deposition method. The effects of deposition time, surface morphology, infrared transmittance and Raman scattering have been studied. Diamond deposited on molybdenum substrate for 100 hours by MW plasma CVD from $CH_4-H_2-O_2$ gas mixture had good crystallity with $100[{\mu}m]$ thickness needed for radiation detector. Diamond radiation detector of M-I-M type was made and the current of radiation detector was increased by increasing X-ray dose.

  • PDF

Electronic and Optical Properties of amorphous and crystalline Tantalum Oxide Thin Films on Si (100)

  • Kim, K.R.;Tahir, D.;Seul, Son-Lee;Choi, E.H.;Oh, S.K.;Kang, H.J.;Yang, D.S.;Heo, S.;Park, J.C.;Chung, J.G.;Lee, J.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.382-382
    • /
    • 2010
  • $TaO_2$ thin films as gate dielectrics have been proposed to overcome the problems of tunneling current and degradation mobility in achieving a thin equivalent oxide thickness. An extremely thin $SiO_2$ layer is used in order to separate the carrier in MOSFETchannel from the dielectric field fluctuation caused by phonons in the dielectric which decreases the carrier mobility. The electronic and optical properties influenced the device performance to a great extent. The atomic structure of amorphous and crystalline Tantalum oxide ($TaO_2$) gate dielectrics thin film on Si (100) were grown by utilizing atomic layer deposition method was examined using Ta-K edge x-ray absorption spectroscopy. By using X-ray photoelectron spectroscopy and reflection electron energy loss spectroscopy (REELS) the electronic and optical properties was obtained. In this study, the band gap (3.400.1 eV) and the optical properties of $TaO_2$ thin films were obtained from the experimental inelastic scattering cross section of reflection electron energy loss spectroscopy (REELS) spectra. EXAFS spectra show that the ordered bonding of Ta-Ta for c-$TaO_2$ which is not for c-$TaO_2$ thin film. The optical properties' e.g., index refractive (n), extinction coefficient (k) and dielectric function ($\varepsilon$) were obtained from REELS spectra by using QUEELS-$\varepsilon$(k, $\omega$)-REELS software shows good agreement with other results. The energy-dependent behaviors of reflection, absorption or transparency in $TaO_2$ thin films also have been determined from the optical properties.

  • PDF

Effects of Film Thickness and Annealing Temperature on the Specific Contact Resistivity and the Transmittance of the IZO Layers Grown on p-GaN by Roll-to-Roll Sputtering (p-GaN 위에 Roll-to-Roll sputter로 성장된 IZO의 접촉 비저항 및 투과도에 대한 박막 두께와 열처리 온도의 영향)

  • Kim, Jun Young;Kim, Jae-Kwan;Han, Seung-Cheol;Kim, Han Ki;Lee, Ji-Myon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.565-569
    • /
    • 2010
  • We report on the characteristics of indium-oxide-doped ZnO (IZO) ohmic contact to p-GaN. The IZO ohmic contact layer was deposited on p-GaN by a Roll-to-Roll (RTR) sputter method. IZO contact film with a thickness of 360, 230 and 100 nm yielded an ohmic contact resistance of $4.70{\times}10^{-4}$, $5.95{\times}10^{-2}$, $4.85{\times}10^{-1}\;{\Omega}cm^{2}$ on p-GaN when annealed at $600{^{\circ}C}$ for 1 min under a nitrogen ambient, respectively. While the transmittance of IZO film with a thickness of 360 nm slightly increased in the wavelength range of 380-800 nm after annealing, the transmittance rapidly increased up to 80% after annealing at $600{^{\circ}C}$ in the wavelength range of 380~430 nm because the crystallization of IZO film and created Ga vacancies near the p-GaN surface region were affected by the annealing. These results indicate that ohmic contact resistance and transmittance of the IZO films improved.

Fabrication and Evaluation Properties of Titanium Sintered-body for a Sputtering Target by Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 스퍼터링 타겟용 타이타늄 소결체 제조 및 특성 평가)

  • Lee, Seung-Min;Park, Hyun-Kuk;Youn, Hee-Jun;Yang, Jun-Mo;Woo, Kee-Do;Oh, Ik-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.845-852
    • /
    • 2011
  • The Spark Plasma Sintering(SPS) method offers a means of fabricating a sintered-body having high density without grain growth through short sintering time and a one-step process. A titanium compact having high density and purity was fabricated by the SPS process. It can be used to fabricate a Ti sputtering target with controlled parameters such as sintering temperature, heating rate, and pressure to establish the optimized processing conditions. The compact/target(?) has a diameter of ${\Phi}150{\times}6.35mm$. The density, purity, phase transformation, and microstructure of the Ti compact were analyzed by Archimedes, ICP, XRD and FE-SEM. A Ti thin-film fabricated on a $Si/SiO_2$ substrate by a sputtering device (SRN-100) was analyzed by XRD, TEM, and SIMS. Density and grain size were up to 99% and below $40{\mu}m$, respectively. The specific resistivity of the optimized Ti target was $8.63{\times}10^{-6}{\Omega}{\cdot}cm$.

Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction

  • Abdel-Khalek, H.;El-Samahi, M.I.;Salam, Mohamed Abd-El;El-Mahalawy, Ahmed M.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1496-1506
    • /
    • 2018
  • Organic/inorganic ultraviolet photodetector was fabricated using thermal evaporation technique. Organic/inorganic heterojunction based on thermally evaporated copper (II) acetylacetonate thin film of thickness 200 nm deposited on an n-type silicon substrate is introduced. I-V characteristics of the fabricated heterojunction were investigated under UV illumination of intensity $65mW/cm^2$. The diode parameters such as ideality factor, n, barrier height, ${\Phi}_B$, and reverse saturation current, $I_s$, were determined using thermionic emission theory. The series resistance of the fabricated diode was determined using modified Nord's method. The estimated values of series resistance and barrier height of the diode were about $0.33K{\Omega}$ and 0.72 eV, respectively. The fabricated photodetector exhibited a responsivity and specific detectivity about 9 mA/W and $4.6{\times}10^9$ Jones, respectively. The response behavior of the fabricated photodetector was analyzed through ON-OFF switching behavior. The estimated values of rise and fall time of the present architecture under UV illumination were about 199 ms and 154 ms, respectively. Finally, enhancing the photoresponsivity of the fabricated photodetector, post-deposition plasma treatment process was employed. A remarkable modification of the device performance was noticed as a result of plasma treatment. These modifications are representative in a decrease of series resistance and an increase of photoresponsivity and specific detectivity. The process of plasma treatment achieved an increment of external quantum efficiency from 5.53% to 8.34% at -3.5 V under UV illumination.

Numerical Analysis of the Wake of a Surface Ship Model Mounted in KRISO Large Cavitation Tunnel (KRISO 대형 캐비테이션터널 시험조건의 함정 모형선 반류에 대한 수치해석적 연구)

  • Park, Il-Ryong;Kim, Je-In;Kim, Ki-Sup;Ahn, Jong-Woo;Park, Young-Ha;Kim, Myoung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.494-502
    • /
    • 2016
  • The accurate assessment of hull-appendage interaction in the early design stage is important to control the inflow to the propeller plane, which can cause undesirable hydrodynamic effects in terms of cavitation phenomenon. This paper describes a numerical analysis for the flow around a fully appended surface ship model for which KRISO has carried out a model test in the Large Cavitation Tunnel(LCT). This numerical study was performed with the LCT model test in a complementary manner for a good reproduction of the wake distribution of surface ships. A second order accurate finite volume method provided by a commercial computational fluid dynamics(CFD) program was used to solve the governing Reynolds Averaged Navier-Stokes(RANS) equations, where the SST $k-{\omega}$ model was used for turbulence closure. The numerical results were compared to available LCT experimental data for validation. The calculations gave good predictions for the boundary layer profiles on the walls of the empty cavitation tunnel and the wake at the propeller plane of the fully appended hull model in the LCT.

The Investigation of Ni Thin Film by Atomic Layer Deposition

  • Do K. W.;Yang C. M.;Kang I. S.;Kim K. M.;Back K. H.;Cho H. I.;Lee H. B.;Kong S. H.;Hahm S. H.;Kwon D. H.;Lee J. H.;Lee J. H.
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.193-196
    • /
    • 2005
  • Low resistance Ni thin films for using NiSi formation and metallization by atomic layer deposition (ALD) method have been studied. ALD temperature window is formed between $200^{\circ}C\;and\;250^{\circ}C$ with deposition rate of $1.25{\AA}$/cycle. The minimum resistance of deposited Ni films shows $4.333\;{\Omega}/\square$ on the $SiO_2/Si$ substrate by $H_2$ direct purging process. The reason of showing the low resistance is believed to be due to format ion of the $Ni_3C$ phase by residual carbon in Bis-Ni The deposited film exhibits excellent step coverage in the trench having 1(100 nm) : 16 (1.6 um) aspect ratio.

  • PDF

Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor

  • Li, Yi;Chen, Jun;Han, Xiao;Li, Yinghui;Zhang, Ziqiang;Ma, Yanwen
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850146.1-1850146.9
    • /
    • 2018
  • The rapid development of smart textiles requires the large-scale fabrication of conductive fibers. In this study, we develop a simple, scalable and low-cost capillary-driven self-assembly method to prepare conductive fibers with uniform morphology, high conductivity and good mechanical strength. Fiber-shaped flexible and stretchable conductors are obtained by coating highly conductive and flexible silver nanowires (Ag NWs) on the surfaces of yarn and PDMS fibers through evaporation-induced flow and capillary-driven self-assembly, which is proven by the in situ optical microscopic observation. The density of Ag NWs and linear resistance of the conductive fibers could be regulated by tuning the assembly cycles. A linear resistance of $1.4{\Omega}/cm$ could be achieved for the Ag NWs-coated nylon, which increases only 8% after 200 bending cycle, demonstrating high flexibility and mechanical stability. The flexible and stretchable conductive fibers have great potential for the application in wearable devices.

Numerical Analysis of the Cavitation Around an Underwater Body with Control Fins (제어핀이 달린 수중 물체의 공동 수치해석)

  • Kim, Hyoung-Tae;Choi, Eun-Ji;Knag, Kyung-Tae;Yoon, Hyun-Gull
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.298-307
    • /
    • 2019
  • The evolution of the cavity and the variation of the drag for an underwater body with control fins are investigated through a numerical analysis of the steady cavitating turbulent flow. The continuity and the steady-state RANS equations are numerically solved using a mixture fluid model for calculating the multiphase turbulent flow of air, water and vapor together with the SST $k-{\omega}$ turbulence model. The method of volume of fluid is applied by the use of the Sauer's cavitation model. Numerical solutions have been obtained for the cavity flow about an underwater body shaped like the Russian high-speed torpedo, Shkval. Results are presented for the cavity shape and the drag of the body under the influence of the gravity and the free surface. The evolution of the cavity with the body speed is discussed and the calculated cavity shapes are compared with the photographs of the cavity taken from an underwater launch experiment. Also the variation of the drag for a wide range of the body speed is investigated and analyzed in details.