DOI QR코드

DOI QR Code

Fabrication and Evaluation Properties of Titanium Sintered-body for a Sputtering Target by Spark Plasma Sintering Process

방전플라즈마 소결 공정을 이용한 스퍼터링 타겟용 타이타늄 소결체 제조 및 특성 평가

  • Lee, Seung-Min (Korea Institute of Industrial Technology (KITECH), Automotive Components Center) ;
  • Park, Hyun-Kuk (Korea Institute of Industrial Technology (KITECH), Automotive Components Center) ;
  • Youn, Hee-Jun (Korea Institute of Industrial Technology (KITECH), Automotive Components Center) ;
  • Yang, Jun-Mo (Measurement & Analysis Team, National Nanofab Center) ;
  • Woo, Kee-Do (School of Advanced Materials Engineering, Chunbuk National University) ;
  • Oh, Ik-Hyun (Korea Institute of Industrial Technology (KITECH), Automotive Components Center)
  • 이승민 (한국생산기술연구원 동력부품센터) ;
  • 박현국 (한국생산기술연구원 동력부품센터) ;
  • 윤희준 (한국생산기술연구원 동력부품센터) ;
  • 양준모 (나노종합팹센터 특성평가팀) ;
  • 우기도 (전북대학교 금속공학과) ;
  • 오익현 (한국생산기술연구원 동력부품센터)
  • Received : 2011.03.30
  • Published : 2011.11.25

Abstract

The Spark Plasma Sintering(SPS) method offers a means of fabricating a sintered-body having high density without grain growth through short sintering time and a one-step process. A titanium compact having high density and purity was fabricated by the SPS process. It can be used to fabricate a Ti sputtering target with controlled parameters such as sintering temperature, heating rate, and pressure to establish the optimized processing conditions. The compact/target(?) has a diameter of ${\Phi}150{\times}6.35mm$. The density, purity, phase transformation, and microstructure of the Ti compact were analyzed by Archimedes, ICP, XRD and FE-SEM. A Ti thin-film fabricated on a $Si/SiO_2$ substrate by a sputtering device (SRN-100) was analyzed by XRD, TEM, and SIMS. Density and grain size were up to 99% and below $40{\mu}m$, respectively. The specific resistivity of the optimized Ti target was $8.63{\times}10^{-6}{\Omega}{\cdot}cm$.

Keywords

References

  1. M. J. Donachie. Jr., Titanium and Titanium Alloys Source Book. p. 3, (1982).
  2. R. Boyer, G. Welsch and E. W. collings, Mater. Properties Handbook : Titanium Alloys, p. 3 (1994).
  3. W. F. Smith, Struct. and Proper. of Eng. Alloys, p. 411 (1981).
  4. Z. Liu and G. Welsch, Met. Trans. A19, 1121 (1988).
  5. M. J. Blackburn and J. C. Williams, Trans. ASM 62, 398 (1969).
  6. F. Hoppner, Metallograp. 11, 1299 (1978).
  7. W. A. Baeslack III, D. W. Becker, and F. H. Froes, J. of Metals 46, 36 (1984).
  8. G. Welsch and W. Bunk, Metall. Trans. 13A, 890 (1982).
  9. B. B. Rath, R. J. Lederich, C. F. Yolton, and F. H. Froes, Metall. Trans. 10A, 1013 (1979).
  10. H. C. Kim, H. K. Park, I. K. Jung, I. Y. Ko, and I. J. Shon, Cermics Int. 34, 1419 (2008). https://doi.org/10.1016/j.ceramint.2007.03.029
  11. Jia K, Fischer TE, and Gallois G., Nanostruct Mater. 10, 875 (1998). https://doi.org/10.1016/S0965-9773(98)00123-8
  12. H. C. Kim, Ph D. Thesis (in Korean), p. 44-48 Chonbuk University Chonbuk (2005).
  13. J. Y. Kim, J. K. Kim, S. C. Han, H. K. Kim, and J. M. Lee, Kor. J. Met. Mater. 48, 565 (2010).