• Title/Summary/Keyword: Olefin reduction

Search Result 14, Processing Time 0.023 seconds

Changes in Facilitated Transport Behavior of Silver Polymer Electrolytes by UV Irradiation

  • Jongok Won;Yosang Yoon;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.80-84
    • /
    • 2002
  • Silver species other than the silver ion were formed by UV irradiation on polymer electrolyte membranes containing silver salts and their effect on complexation behavior between the silver and olefin was investigated through the separation performance of olefin/paraffin mixtures. The ideal propylene/propane separation factor reached 350 and the separation coefficient was ca.15 due to the high loading amount of silver ions into poly(2-ethyl-2-oxazoline) (POZ) without UV irradiation. On UV irradiation either in air or under nitrogen, the silver-POZ membranes became yellow-brown initially due to the formation of colloidal silver particles, and finally black and metal-like luster. Even when Ag$^{+}$ was converted, to some extent, to Ag$^{\circ}$ by UV irradiation in air at the early stage, the separation coefficient of olefin/paraffin mixtures was maintained. This suggests that silver species other than the silver ion is active for olefin carrier for facilitated transport. Meanwhile the steady decrease of the separation coefficient was observed in the silver/POZ membranes irradiated under $N_2$. It is suggested that the reduction of silver ions in POZ goes through a different photoreduction mechanism with UV irradiation depending on the environment.t.

Contribution of Advanced or Alternative Process to Carbon-Dioxide Emission Reduction in Olefin Production Plant (올레핀(Olefin) 생산 공정에서 발생하는 이산화탄소 배출 저감을 위한 신기술 적용 효과)

  • Wee, Jung-Ho;Choi, Kyoung-Sik;Kim, Jeong-In;Lee, Sang-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.679-689
    • /
    • 2009
  • Light olefins are very important hydrocarbons widely used as the raw materials of the most petrochemicals including plastics and medicines. In addition, the nation's olefin production capacity is regarded as one of the key indicators to predict the nation's economic scale and growth. Steam cracking of naphtha (or called "NCC (Naphtha Cracking Center) technology"), the traditional process to produce light olefins, is one of the most consuming energy processes among the chemical industries. Therefore, this process causes tremendous $CO_2$ emission. To reduce the energy consumption and $CO_2$ emission from NCC process, the present paper, firstly, investigates and analyses some alternative technologies which can be potentially substituted for traditional process. Secondly, applying the alternative technologies to NCC process, their effects such as energy savings, $CO_2$ emission reduction and CER (Certified Emission Reduction) were estimated. It is found that the advanced NCC process can reduce approximately 35% of SEC (Specific Energy Consumption) of traditional NCC process. This effect can lead to the reduction of 3.3 million tons of $CO_2$ and the acquisition of the 128 billion won of CER per year. Catalytic cracking of naphtha technology, which is other alternative processes, can save up to approximately 40% of SEC of traditional NCC process. This value equates to the 3.8 million tons of $CO_2$ mitigation and 147 billion won of CER per year.

PEBAX-2533/Ag Salt/Al(NO3)3 Composite Using AgCF3SO3 for Facilitated Olefin Transport Membrane (올레핀 촉진수송 분리막용 AgCF3SO3를 활용한 PEBAX-2533/Ag Salt/Al(NO3)3 복합체)

  • Kim, Soyoung;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.61-66
    • /
    • 2021
  • This study was a study on an facilitated transport membrane to replace the cryogenic separation method currently used in olefin/paraffin separation. Cost reduction is also a very important factor to commercialize facilitated transport membranes. However, AgBF4, which has been studied a lot, is a relatively expensive silver salt. To replace this, a PEBAX-2533/ AgCF3SO3/Al(NO3)3 composite film was prepared using relatively inexpensive AgCF3SO3. It was analyzed through SEM, FT-IR, and RAMAN. Through this study, it was confirmed that the polymer matrix affects the long-term stability.

Synthesis of 2',3'-Dideoxyisoguanosine from Guanosine

  • Kim, Sung-Han;Lee, Sang-Jun;Sun, Won-Suck;Oh, Sung-Wook;Kim, Jung-Han
    • Archives of Pharmacal Research
    • /
    • v.22 no.6
    • /
    • pp.619-623
    • /
    • 1999
  • $2^{l},3^{l}$-dideoxyisoguanosine was synthesized from guanosine via intermediate 6-[(4-methyl-phenyl)thio]-2-oxo-9-($2^{l},3^{l},5^{l}$-tri-O-acetyl-$\beta$-D-ribofuranosyl)-2,3-dihydropurine (4). The 2-oxo, 6-amino and $5^{l}$-hydroxy triprotected isoguanosine derivative was utilized to reduce high polarity and promote poor solubility of intermediates. The protecting groups for oxo and 6-amino were easily removed in reduction of olefin in ribose without additional reaction steps.$2^{l},3^{l}$-Vicinal diol in ribose sugar moiety was transformed to olefin with Bu3SnH by radical reaction via bisxanthate. Removing $5^{l}$-O-TBDMS protecting group gave final product, $2^{l},3^{l}$-dideoxyisoguanosine (12) in a 10% overall yield.

  • PDF

Olefin Separation Membranes Based on PEO/PDMS-g-POEM Blends Containing AgBF4/Al(NO3)3 Mixed Salts (AgBF4/Al(NO3)3 혼합염이 포함된 PEO/PDMS-g-POEM 블렌드 기반의 올레핀 분리막)

  • Kim, Sang Jin;Jung, Jung Pyu;Park, Cheol Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.496-502
    • /
    • 2015
  • Facilitated transport is one of the possible solutions to simultaneously improve permeability and selectivity, which is challenging in conventional polymer-based membranes. Olefin/paraffin separation using facilitated transport membrane has received much attention as an alternative solution to the conventional distillation process. Herein, we report olefin separation composite membranes based on the polymer blends containing $AgBF_4/Al(NO_3)_3$ mixed salts. Free radical polymerization process was used to synthesize an amphiphilic graft copolymer of poly(dimethyl siloxane)-graft- poly(ethylene glycol) methyl ether methacrylate (PDMS-g-POEM). In addition, poly(ethylene oxide) (PEO) was introduced to the PDMS-g-POEM graft copolymer to form polymer blends with various ratios. The propylene/propane mixed-gas selectivity and permeance reached up to 5.6 and 10.05 GPU, respectively, when the PEO loading was 70 wt% in polymer blend. The improvement of olefin separation performance was attributed to the olefin facilitating silver ions as well as the highly permeable blend matrix. The stabilization of silver ions in the composite membrane was achieved through the introduction of $Al(NO_3)_3$ which suppressed the reduction of silver ions to silver particles.

Effect of Brij98 on Durability of Silver Polymer Electrolyte Membranes for Facilitated Olefin Transport (올레핀 촉진수송용 고분자 전해질막의 내구성에 대한 Brij98의 효과)

  • Kang, Yong-Soo;Kim, Jong-Hak;Park, Bye-Hun;Won, Jong-Ok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.294-302
    • /
    • 2006
  • Silver polymer electrolytes are very promising membrane materials for the separation of olefin/paraffn mixtures. Olefin molecules are known to be transported through reversible complex formation with silver ions entrapped iii polymer matrix. However, they have poor long-term stability, which is very important fur the industrial application; the selectivity through the membrane decreases gradually with time mostly due to the reduction of silver ions ($Ag^+$) into silver nanoparticles ($Ag^0$). In this study, the stability of silver polymer electrolyte was investigated for poly(vinyl pyrrolidone) (PVP) and $AgBF_4$ system containing a surfactant, i.e. $C_{18}H_{35}(OCH_2CH_2)_{20}OH$ (Brij98) as a stabilizer. The reduction behavior of silver ions to silver nanoparticles in PVP was also investigated by atomic force microscopy (AFM) and UV-visible spectroscopy. It was found that the growth of silver nanoparticles was slower and selectivity of polymer electrolyte for propylene in propylene/propane was maintained longer time when Brij98 was added as a stabilizer.

Ionic Liquid as a Solvent and the Long-Term Separation Performance in a Polymer/Silver Salt Complex Membrane

  • Kang, Sang-Wook;Char, Kook-Heon;Kim, Jong-Hak;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2007
  • The reduction behavior of silver ions to silver nanoparticles is an important topic in polymer/silver salt complex membranes to facilitate olefin transport, as this has a significant effect on the long-term performance stability of the membrane. In this study, the effects ofthe solvent type on the formation of silver nanoparticles, as well as the long-term membrane performance of a solid polymer/silver salt complex membrane were investigated. These effects were assessed for solid complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_4$, using either an ionic liquid (IL), acetonitrile (ACN) or water as the solvent for the membrane preparation. The membrane performance test showed that long-term stability was strongly dependent on the solvent type, which increased in the following order: IL > ACN >> water. The formation of silver nanoparticles was more favorable with the solvent type in the reverse order, as supported by UV-visible spectroscopy. The poor stability of the $(PVP)/AgBF_4$ membrane when water was used as the solvent might have been due to the small amount of water present in the silver-polymer complex membranes actively participating in the reduction reaction of the silver ions into silver nanoparticles. Conversely, the higher stability of the $(PVP)/AgBF_4$, membrane when an IL was used as the solvent was attributable to the cooperative coordination of silver ions with the IL, as well as with the polymer matrix, as confirmed by FTIR spectroscopy.