DOI QR코드

DOI QR Code

Efficient and Chemoselective Reduction of Olefins Catalyzed by Fe3O4 Nanoparticles using Hydrazine Hydrate

  • Kim, Eun-Suk (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Kim, Se-Young (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Kim, B.-Moon (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Received : 2011.04.22
  • Accepted : 2011.06.28
  • Published : 2011.08.20

Abstract

Keywords

References

  1. Ratnayake, W. M. N.; Grossert, J. S.; Ackman, R. J. Am. Oil. Chem. Soc. 1990, 67, 940. https://doi.org/10.1007/BF02541853
  2. Miller, C. E. J. Chem. Educ., 1965, 42, 254. https://doi.org/10.1021/ed042p254
  3. Pasto, D. J.; Taylor, R. T. Reductions with Diimide in: Organic Reactions. V.; Paquette, L. A., Ed.; Wiley & Sons: New York, 1991; Vol. 40, p 91.
  4. Schmidt, E. W. Hydrazine and Its Derivatives: Preparation, Properties, and Applications, 2nd ed.; Wiley & Sons: New York, 2001; Vol. 1, p 475.
  5. Dann, A. T.; Davies, W. J. Chem. Soc.(Resumed), 1929, 1050. https://doi.org/10.1039/jr9290001050
  6. Furst, A.; Berlo, R. C.; Hooton, S. Chem. Rev. 1965, 65, 51. https://doi.org/10.1021/cr60233a002
  7. Lacombe, P.; Castagner, B.; Gareau, Y.; Ruel, R. Tetrahedron Lett. 1998, 39, 6785. https://doi.org/10.1016/S0040-4039(98)01490-7
  8. Haukaas, M. H.; O'Doherty, G. A. Org. Lett. 2002, 4, 1771. https://doi.org/10.1021/ol025844x
  9. Imada, Y.; Iida, H.; Naota, T. J. Am. Chem. Soc. 2005, 127, 14544. https://doi.org/10.1021/ja053976q
  10. Buszek, K. R.; Brown, N. J. Org. Chem. 2007, 72, 3125. https://doi.org/10.1021/jo0622173
  11. Marsh, B. J.; Carbery, D. R. J. Org. Chem. 2009, 74, 3186. https://doi.org/10.1021/jo900237y
  12. Higgison, W. C. E. Recent Aspects of the Inorganic Chemistry of Nitrogen. Chem. Soc., Spec. Publ. 1957, 10, 95.
  13. Aylward, F.; Sawistowska, M. Chem. and Ind. 1961, 433.
  14. Corey, E. J.; Mock, W. L.; Pasto, D. J. Tetrahedron Lett., 1961, 2, 347. https://doi.org/10.1016/S0040-4039(01)91637-5
  15. Corey, E. J.; Pasto, D. J.; Mock, W. L. J. Am. Chem. Soc. 1961, 83, 2957. https://doi.org/10.1021/ja01474a043
  16. Hunig, S.; Muller, H. R.; Thier, W. Tetrahedron Lett., 1961, 2, 353. https://doi.org/10.1016/S0040-4039(01)91638-7
  17. Aylward, F.; Sawistowska, M. Chem. and Ind. 1962, 484.
  18. Aylward, F.; Sawistowska, M. Chem. and Ind. 1964, 1435.
  19. Hunig, S.; Muller, H. R.; Thier, W. Angew. Chem. Int. Ed. 1965, 4, 271. https://doi.org/10.1002/anie.196502711
  20. Ihara Chemical Industry Co., Ltd. JP, 2005/350427A, December 22, 2005. https://doi.org/10.1021/cr010350j
  21. Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev. 2002, 102, 3757. https://doi.org/10.1021/cr010350j
  22. Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. Acc. Chem. Res. 2003, 36, 20. https://doi.org/10.1021/ar990017q
  23. Shokouhimehr, M.; Piao, Y.; Kim, J.; Jang, Y.; Hyeon, T. Angew. Chem. Int. Ed. 2007, 46, 7039. https://doi.org/10.1002/anie.200702386
  24. Jin, M.-J.; Lee, D.-H. Angew. Chem. Int. Ed. 2010, 49, 1119. https://doi.org/10.1002/anie.200905626
  25. Lu, A.-H.; Schmidt, W.; Matoussevitch, N.; Bonnemann, H.; Spliethoff, B.; Tesche, B.; Bill, E.; Kiefer, W.; Schuth, F. Angew. Chem. Int. Ed. 2004, 43, 4303. https://doi.org/10.1002/anie.200454222
  26. Lu, A.-H.; Salabas, E. L.; Schuth, F. Angew. Chem. Int. Ed. 2007, 46, 1222. https://doi.org/10.1002/anie.200602866
  27. Deng, Y.; Cai, Y.; Sun, Z.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. J. Am. Chem. Soc. 2010, 132, 8466. https://doi.org/10.1021/ja1025744
  28. Jacinto, M. J.; Kiyohara, P. K.; Masunaga, S.H.; Jardim, R. F.; Rossi, L. M. Appl. Catal. A 2008, 338, 52. https://doi.org/10.1016/j.apcata.2007.12.018
  29. Yinghuai, Z.; Peng, S. C.; Emi, A.; Zhenshun, S.; Monalisa, R.; Kemp, A. Adv. Synth. Catal. 2007, 349, 1917. https://doi.org/10.1002/adsc.200700021
  30. Stevens, P. D.; Li, G.; Fan, J.; Yen, M.; Gao, Y. Chem. Commun. 2005, 4435. https://doi.org/10.1021/cm100277k
  31. Feyen, M.; Weidenthaler, C.; Schuth, F.; Lu, A.-H. Chem. Mater. 2010, 22, 2955. https://doi.org/10.1021/cm100277k
  32. Aschwanden, L.; Panella, B.; Rossbach, P.; Keller, B.; Baiker, A. ChemCatChem 2009, 1, 111. https://doi.org/10.1002/cctc.200900085
  33. Panella, B.; Vargas, A.; Baiker, A. J. Catal. 2009, 261, 88. https://doi.org/10.1016/j.jcat.2008.11.002
  34. Zhai, Y.; Dou, Y.; Liu, X.; Tu, B.; Zhao, D. J. Mater. Chem. 2009, 19, 3292. https://doi.org/10.1039/b821945a
  35. Stevens, P. D.; Fan, J.; Gardimalla, H. M. R.; Yen, M.; Gao, Y. Org. Lett. 2005, 7, 2085. https://doi.org/10.1021/ol050218w
  36. Guin, D.; Baruwati, B.; Manorama, S. V. Org. Lett. 2007, 9, 1419. https://doi.org/10.1021/ol070290p
  37. Baruwati, B.; Guin, D.; Manorama, S. V. Org. Lett. 2007, 9, 5377. https://doi.org/10.1021/ol702064x
  38. Liu, J.; Peng, X.; Sun, W.; Zhao, Y.; Xia, C. Org. Lett. 2008, 10, 3933. https://doi.org/10.1021/ol801478y
  39. Mori, K.; Kondo, Y.; Yamashita, H. Phys. Chem. Chem. Phys. 2009, 11, 8949. https://doi.org/10.1039/b910069e

Cited by

  1. Iron(III) Chloride-Catalysed Aerobic Reduction of Olefins using Aqueous Hydrazine at Ambient Temperature vol.354, pp.8, 2012, https://doi.org/10.1002/adsc.201200110
  2. Reduction of alkenes catalyzed by copper nanoparticles supported on diamond nanoparticles vol.49, pp.23, 2013, https://doi.org/10.1039/c3cc39011j
  3. Cross-Coupling of Cyclopropanols: Concise Syntheses of Indolizidine 223AB and Congeners vol.16, pp.23, 2014, https://doi.org/10.1021/ol503136s
  4. MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts vol.5, pp.8, 2014, https://doi.org/10.1039/c4sc00265b
  5. @GO nanocatalyst using hydrazine hydrate as the hydrogen source vol.50, pp.81, 2014, https://doi.org/10.1039/C4CC04770B
  6. A Serendipitous Rendezvous with a Four-Center Two-Electron Bonded Intermediate in the Aerial Oxidation of Hydrazine vol.22, pp.4, 2015, https://doi.org/10.1002/chem.201503455
  7. under Intensified Continuous Flow Conditions vol.20, pp.2, 2016, https://doi.org/10.1021/acs.oprd.5b00370
  8. Heterodimer Nanocrystals as Recoverable Catalysts for Ligand-Free Hiyama Cross-Coupling Reactions vol.37, pp.12, 2016, https://doi.org/10.1002/bkcs.11013
  9. An efficient halometallate ionic liquid functionalized mesoporous ZSM-5 for the reduction of carbon–carbon multiple bonds vol.5, pp.7, 2018, https://doi.org/10.1039/C8QI00245B
  10. The Alkali Metal Interactions with MgO Nanotubes vol.33, pp.6, 2011, https://doi.org/10.5012/bkcs.2012.33.6.1925
  11. In Situ Generation of Diimide from Hydrazine and Oxygen: Continuous‐Flow Transfer Hydrogenation of Olefins vol.125, pp.39, 2011, https://doi.org/10.1002/ange.201303528
  12. Fe3O4 Nanoparticles as an Efficient and Magnetically Recoverable Catalyst for the Synthesis of α,β-Unsaturated Heterocyclic and Cyclic Ketone vol.43, pp.24, 2013, https://doi.org/10.1080/00397911.2013.786089
  13. In Situ Generation of Diimide from Hydrazine and Oxygen: Continuous‐Flow Transfer Hydrogenation of Olefins vol.52, pp.39, 2011, https://doi.org/10.1002/anie.201303528
  14. Photodriven Transfer Hydrogenation of Olefins vol.2014, pp.33, 2011, https://doi.org/10.1002/ejoc.201403021
  15. Continuous Flow Reduction of Artemisinic Acid Utilizing Multi‐Injection Strategies—Closing the Gap Towards a Fully Continuous Synthesis of Antimalarial Drugs vol.21, pp.11, 2015, https://doi.org/10.1002/chem.201406439
  16. Enhanced Reactivity of Aerobic Diimide Olefin Hydrogenation with Arylboronic Compounds: An Efficient One‐Pot Reduction/Oxidation Protocol vol.2015, pp.33, 2015, https://doi.org/10.1002/ejoc.201501222
  17. Magnetic nanoparticles supported Schiff-base/copper complex: An efficient nanocatalyst for preparation of biologically active 3,4-dihydropyrimidinones vol.504, pp.None, 2011, https://doi.org/10.1016/j.jcis.2017.05.044