• Title/Summary/Keyword: Oled

Search Result 1,537, Processing Time 0.036 seconds

An OLED Pixel Circuit Compensating Threshold Voltage Variation of n-channel OLED·Driving TFT (n-채널 OLED 구동 박막 트랜지스터의 문턱전압 변동을 보상할 수 있는 OLED 화소회로)

  • Chung, Hoon-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.3
    • /
    • pp.205-210
    • /
    • 2022
  • A novel OLED pixel circuit is proposed in this paper that uses only n-type thin-film transistors(TFTs) to improve the luminance non-uniformity of the AMOLED display caused by the threshold voltage variation of an OLED driving TFT. The proposed OLED pixel circuit is composed of 6 n-channel TFTs and 2 capacitors. The operation of the proposed OLED pixel circuit consists of the capacitor initializing period, threshold voltage sensing period of an OLED·driving TFT, image data voltage writing period, and OLED·emitting period. As a result of SmartSpice simulation, when the threshold voltage of·OLED·driving TFT varies from 1.2 V to 1.8 V, the proposed OLED pixel circuit has a maximum current error of 5.18 % at IOLED = 1 nA. And, when the OLED cathode voltage rises by 0.1 V, the proposed OLED pixel circuit has very little change in the OLED current compared to the conventional OLED pixel circuit. Therefore, the proposed pixel circuit exhibits superior compensation characteristics for the threshold voltage variation of an OLED driving TFT and the rise of the OLED cathode voltage compared to the conventional OLED pixel circuit.

2.2" Digital driving AMOLED One-chip Solution for Mobile Application

  • Bae, Han-Jin;Kim, Seung-Tae;Lim, Ho-Min;Ha, Won-Kyu;Lee, Jae-Do;Kim, Ji-Hun;Kim, Hak-Su;Han, Chang-Wook;Tak, Yoon-Heung;Ahn, Byung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.127-130
    • /
    • 2008
  • A 2.2" QVGA($320{\times}240$) 262,114 color AMOLED module has been developed using digital driving methodology. In this paper, we discuss the development of diver IC which is applied to Digital AMOLED module. Technologies for low cost IC structure and image quality enhancement are presented.

  • PDF

Novel tandem white OLED panel architecture for wide color gamut and viewing angle

  • Lee, Sung-Hun;Kim, Mu-Gyeom;Song, Jung-Bae;Kim, Sang-Yeol;Tamura, Shinichiro;Kang, Sung-Kee;Kim, Jong-Min;Lee, Sung-Soo;Choi, Jun-Ho;Ha, Jae-Kook;Chu, Chang-Woong;Kim, Chi-Woo;Lee, Jin-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1112-1115
    • /
    • 2008
  • A very high current efficiency of 28 cd/A for three-mode microcavity tandem WOLED was successfully demonstrated. The 101 % of NTSCu'v' ratio of this white OLED with LCD color filter was achieved. In addition to wide color gamut, the highest delta (u'v') of respective RGB colors among the viewing angles 0 and 60 degree is just 0.042 and that of white color is less than 0.02.

  • PDF

PM OLED Fabrication with New Method of Metal Cathode Deposition Using Shadow Mask

  • Lee, Ho-Chul;Kang, Seong-Jong;Yi, Jung-Yoon;Kim, Ho-Eoun;Kwon, Oh-June;Hwang, Jo-Il;Kim, Jeong-Moon;Roh, Byeong-Gyu;Kim, Woo-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.987-989
    • /
    • 2006
  • 1.52" $130(RGB){\times}130$ full color PM OLED device with $70\;{\mu}m{\times}210\;{\mu}m$ of sub-pixel pitch was fabricated using shadow mask method for metal cathode deposition. Instead of conventional patterning process to form cathode separator via photolithography, regularly patterned shadow mask was applied to deposit metal cathode in this OLED display. Metal cathode was patterned via 2-step evaporation using shadow mask with shape of rectangular stripe and its alignment margin is $2.5\;{\mu}m$. Technical advantages of this method include reduction of process time according to skipping over photolithographic process for cathode separator and minimizing pixel shrinkage caused by PR cathode separator as well as improving lifetime of OLED device.

  • PDF

Enhancing Lifetime of White OLED Device by Minimizing Operating Voltage Increase

  • Lee, Sung-Soo;Choi, Jun-Ho;Ha, Jae-Kook;Lee, Sang-Pil;Kim, Seong-Min;Choi, Ji-Hye;Lee, Soo-Yeon;Kim, Hyo-Seok;Chu, Chang-Woong;Shin, Sung-Tae;Kim, Chi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1658-1660
    • /
    • 2007
  • We fabricate green device having unique life time characteristics of operating voltage reduction with time, ${\Delta}V_{op}$ <0. A green device needs lower voltage than initial voltage for sustaining constant current as life time goes on. It means there are two possible reasons; one is interface modification between anode and HIL due to oxygen plasma treatment and the other is bulk property modification due to combination of new green host and new green dopant. From these materials and oxygen plasma treatment, we can make white OLED device having the characteristics of low ${\Delta}V_{op}$ increasing.

  • PDF

Improved stability of organic light-emitting diodes with lithium-quinolate doped electron transport layer

  • Choi, Sung-Hoon;Kim, Sang-Dae;Han, Kyu-Il;Lee, Se-Hee;Park, Eun-Jung;Kum, Tae-Il;Jung, Young-Kwan;Lee, Seok-Jong;Lee, Nam-Yang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.771-774
    • /
    • 2009
  • The Improved stability of organic light emitting diodes (OLEDs) containing lithium-quinolate (Liq) as the ETL doping material is investigated. The lifetime could be improved by threefold using the Liq-doped ETL structure. The improvement was attributed to the Liq-doped ETL, which improved hole-electron balance and has a good electrical stability. Additionally, when the Liq doped device was combined with an Mg/Al cathode, the OLED produced a longer lifetime than other device.

  • PDF

Compensation of OLED Degradation by AMOLED Pixel Circuit

  • Choi, Sang-Moo;Goo, Bon-Seok;Kang, Jin-Goo;Kim, Keum-Nam;Kim, Yang-Wan;Choi, Woong-Sik;Kim, Byung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.466-469
    • /
    • 2009
  • The life time of AMOLED displays has been dependent on OLED materials up to this point. In particular, image sticking (burn-in) has been one of the most critical issues for AMOLEDs. This paper proposes image sticking compensation AMOLED pixel circuits to address the problem without requiring process or material improvements to the OLED itself. We verified the performance of those circuits by simulation and actual panel implementation.

  • PDF

A new method for monitoring an OLED panel for lighting by sensing the wave-guided light

  • Han, Jun-Han;Moon, Jaehyun;Shin, Jin-Wook;Joo, Chul Woong;Cho, Doo-Hee;Hwang, Joohyun;Huh, Jin Woo;Chu, Hye Yong;Lee, Jeong-Ik
    • Journal of Information Display
    • /
    • v.13 no.3
    • /
    • pp.119-123
    • /
    • 2012
  • In this work, we report on a new monitoring method for an organic light-emitting diode (OLED) panel for lighting by optical sensing of the wave-guided light in the substrate. Using microlens array films, the wave-guided light was extracted into the edge or back side of the panel to be monitored by a photodiode. The luminance of the extracted light was measured as linearly proportional to the front light. Thus, by converting the extracted light into photo voltage, monitoring the luminance change occurring in the OLED is possible. Based on the results and concepts, we have proposed a photodiode-equipped driving circuit which can generate compensated driving current for uniform luminance of OLED panels.

Highly Robust Bendable a-IGZO TFTs on Polyimide Substrate with New Structure

  • Kim, Tae-Woong;Stryakhilev, Denis;Jin, Dong-Un;Lee, Jae-Seob;An, Sung-Guk;Kim, Hyung-Sik;Kim, Young-Gu;Pyo, Young-Shin;Seo, Sang-Joon;Kang, Kin-Yeng;Chung, Ho-Kyoon;Berkeley, Brain;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.998-1001
    • /
    • 2009
  • A new flexible TFT backplane structure with improved mechanical reliability is proposed. Amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistors based on this structure have been fabricated on a polyimide substrate, and the resultant mechanical durability has been evaluated in a cyclic bending test. The panel can withstand 10,000 bending cycles at a bending radius of 5 mm without any noticeable TFT degradation. After 10K bending cycles, the change of threshold voltage, mobility, sub-threshold slope, and gate leakage current were only -0.22V, -0.13$cm^2$/V-s, -0.05V/decade, and $-3.05{\times}10^{-13}A$, respectively.

  • PDF

Effect of Passivation Layer Properties on the Performance of Oxide TFTs

  • Jeong, Byoung-Seong;Park, Chang-Mo;Kim, Mu-Gyeom;Chung, Hyun-Joong;Ahn, Tae-Kyung;Heo, Seong-Kweon;Jeong, Jong-Han;Kim, Min-Kyu;Park, Hye-Hyang;Huh, Jong-Moo;Mo, Yeon-Gon;Kim, Hye-Dong;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1040-1043
    • /
    • 2009
  • a-IGZO is an attractive material to make an AMOLED device with uniform TFT properties for use in a large size display. However, this material shows TFT properties that are very sensitive to water or hydrogen. Therefore, it is essential to control these critical factors during fabrication of the backplane in order to improve the TFT performance. In this paper, we report the effect of passivation layer properties on the performance of the oxide TFTs.

  • PDF