• Title/Summary/Keyword: Okcheon Belt

Search Result 49, Processing Time 0.024 seconds

The Age of the Okcheon Metamorphic Belt-How Much Do We Know? (옥천 변성대의 시기-우리는 얼마만큼 알고 있나?)

  • Kwon, Sung-Tack
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.51-56
    • /
    • 2008
  • The geologic age of the Okcheon metamorphic belt, used to be a longstanding puzzle, has been settled down to Neoproterozoic to Paleozoic with discovery of fossils and isotopic age dating of metavolcanic rocks. As isotopic ages become accumulated, there appeared a controversy over the age of peak metamorphism in the Okcheon metamorphic belt, i.e., a single late Permian-early Triassic metamorphism (CHIME allanite age and U-Pb age of metamorphic zircon), or earlier independent presence of early Permian metamorphism (U-Pb age of allanite within garnet porphyroblast). If we compare the isotopic ages that can represent metamorphism, the data for the latter have much larger error than those of the former with some overlap considering the error limits. It means that, the former, supported by two independent ages, is considered a better representation for the age of metamorphism of the Okcheon metamorphic belt. Therefore, I propose the idea of early Permian metamorphism should better be reserved until conclusive evidence appears. The late Permian-early Triassic metamorphic age suggest that the effect of continental collision influenced much of the middle part of Korean Peninsula, namely, the Imjingang belt, the Gyeonggi massif and the Okcheon belt.

Geochemical Comparison Study on the Amphibolite in the Central Gyeonggi massif and Southeastern Okcheon metamorphic belt (중부 경기육괴와 동남부 옥천변성대의 각섬암에 대한 지화학적 비교 연구)

  • Na Ki Chang;Cheong Won Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.201-213
    • /
    • 2004
  • The Precambrian amphibolites in the central Gyeonggi massif, Yangsuri, Gyeonggido and southeastern Okcheon metamophic belt, Mungyeonggun, Gyeongsangbukdo, Korea, were studied on the geochemical characteristics of major and trace elements, and discussed petrogenetically and geotectonically. The characteristics of major elements of the amphibolites in these study areas are igeous origin such as tholeiitic-, subalkaline and alkaline basalt. Geotectonic distinction diagrams of trace elements such as Ti-Zr-Y and Zr-Nb-Y show basaltic igneous activity of island arc and mid ocean ridge environment at central Gyunggi massif, and within plate environment at southeastern Okcheon metamorphic belt. This result shows that genetic environments of study areas are different. Especially, origin of amphibolites in central Gyeonggi massif is similar with that of western Gyeonggi massif but different with the amphibolites of Chuncheon area. Genetic environment estimated of fractional crystallization of plagioclase has no particular effect on the origin of magma because value of LREE is higher than that of HREE and Eu anomaly definitely don't be exposed.

Isotope Geochemistry of Uranium Ore Deposits in Okcheon Metamorphic Belt, South Korea (옥천변성대내(沃川變成帶內)에 분포(分布)하는 우라늄광상(鑛床)의 동위원소(同位元素) 지구화학적(地球化學的) 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.163-173
    • /
    • 1986
  • Black and graphite slates from the Okcheon metamorphic belt contain enriched values of uranium (average 200~250ppm) and molybdenum (average 150~200ppm). Uranium mineralization is closely associated with quartz and sulfide veinlets which are formed diagenetically in graphite slate. The uranium minerals were concentrated in outer part of graphite nodules. The ${\delta}^{13}C$ values of organic carbon from the metasediments including uranium bearing graphite slate range from -15.2 to -26.1‰ with a mean of -23.5‰. Meanwhile, ${\delta}^{13}C$ values of coal and coaly shale from some Paleozoic coal fields of South Korea vary from -19.4 to -23.9‰ with an average of -22.5‰. Isotopic compositions of vein calcite in uranium bearing slate range from -13.4 to -15.4‰ in ${\delta}^{13}C$ and +11.3 to +15.1‰ in ${\delta}^{18}O$ could indicate a reduced organic carbon source isotopically exchanged with a graphite of biogenic origin. Metamorphic temperature determined by a calcite-graphite isotope geothermometer was 383~$433^{\circ}C$ which corresponded to greenschist facies by Miyashiro (1973) and is consistent with metamorphic facies estimated by mineral assemblages (Lee, et al., 1981, and Kim, 1971). The fixation of uranyl species by carbonaceous matter in marine epicontinental environment, and remobilization of organouranium by diagenetic processes have attributed to the enrichment of uranium and heavy metals in the graphite slate of Okcheon metamorphic belt.

  • PDF

Geochemical and Geochronological Studies on Metaigneous Rocks in the Gyemyeongsan Formation, Northwestern Okcheon Metamorphic Belt and their Tectonic Implication (옥천변성대 북서부 계명산층 내 변성화성암류의 지구화학 및 지구연대학적 연구와 그 지구조적 의의)

  • 박종길;김성원;오창환;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.155-169
    • /
    • 2003
  • In the northwest Okcheon metamorphic belt, the metaigneous rocks in the Gyemyeongsan Formation have wider chemical ranges for major, trace and REE elements compared with metaigneous rocks in the Munjuri Formation and do not represent bimodal igneous activity which is characteristic for a continental rifting. The metaigneous rocks in the Munjuri Formation are regarded as products of single magmatic evolution, whereas those in the Gyemyeongsan Formation may be formed through multiple magmatic episodes. The felsic metavolcanic rocks in the Gyemyeongsan Formation show weaker Eu negative anomalies compared with those in the Munjuri Formation but those in both formations show similar degrees of enrichment from LREE to HREE. The metabasites in the Munjuri Formation do not show Eu anomalies but those in the Gyemyeongsan Formation show both positive and negative Eu anomalies(0.59

Preliminary Structural Geometry Interpretation of the Pyeongchang Area in the Northwestern Taebaeksan Zone, Okcheon Belt: A Klippe Model (옥천대 북서부 태백산지역 평창 일대의 클리페 모델 기반 구조기하 형태 해석 예비 연구)

  • Heunggi Lee;Yirang Jang;Sanghoon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.831-846
    • /
    • 2023
  • The Jucheon-Pyeongchang area in the northwestern Taebaeksan Zone of the Okcheon fold-thrust belt preserved several thrust faults placing the Precambrian basement granite gneisses of the Gyeonggi Massif on top of the Early Paleozoic Joseon Supergroup and the age-unknown Bangrim Group. Especially, the thrust faults in the study area show the closed-loop patterns on the map view, showing older allochthonous strata surrounded by younger autochthonous or para-autochthonous strata. These basement-involved thrusts including Klippes will provide important information on the hinterland portion of the fold-thrust belt. For defining Klippe geometry in the thrust fault terrains of the Jucheon-Pyeongchang area by older on younger relationship, the stratigraphic position of the age-unknown Bangrim Group should be determined. The Middle Cambrian maximum depositional age by the detrital zircon SHRIMP U-Pb method from this study, together with field relations and previous research results suggest that the Bangrim Group overlies the Precambrian basement rocks by nonconformity and underlies the Cambrian Yangdeok Group (Jangsan and Myobong formations). The structural geometric interpretation of the Pyeongchang area based on newly defined stratigraphy indicates that the Wungyori and Barngrim thrusts are the same folded thrust, and can be interpreted as a Klippe, having Precambrian hanging wall granite gneisses surrounded by younger Cambrian strata of the Joseon Supergroup and the Bangrim Group. Further detailed structural studies on the Jucheon-Pyeongchang area can give crucial insights into the basement-involved deformation during the structural evolution of the Okcheon Belt.

Subsurface Structure of the Yeongdong Basin by Analyzing Aeromagnetic and Gravity Data

  • Kim, Kyung-Jin;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.87-96
    • /
    • 2002
  • Aeromagnetic and gravity data were analyzed to delineate the subsurface structure of the Yeongdong basin and its related fault movement in the Okcheon fold belt. The aeromagnetic data of the total intensity (KIGAM, 1983) were reduced to the pole and three dimensional inverse modeling, which considers topography of the survey area in the modeling process, were carried out. The apparent susceptibility map obtained by three dimensional magnetic inversion, as well as the observed aeromagnetic anomaly itself, show clearly the gross structural trend of the Yeongdong basin in the direction on between $N30^{\circ}E$ and $N45^{\circ}E$. Gravity survey was carried out along the profile, of which the length is about 18.2 km across the basin. Maximum relative Bouguer anomaly is about 7 mgals. Both forward and inverse modeling were also carried out for gravity analysis. The magnetic and gravity results show that the Yeongdong basin is developed by the force which had created the NE-SW trending the magnetic anomalies. The susceptibility contrast around Yeongdong fault is apparent, and the southeastern boundary of the basin is clearly defined. The basement depth of the basin appears to be about 1.1 km beneath the sea level, and the width of the basin is estimated to be 7 km based on the simultaneous analysis of gravity and magnetic profiles. There exists an unconformity between the sedimentary rocks and the gneiss at the southeastern boundary, which is the Yeongdong fault, and granodiorite is intruded at the northwestern boundary of the basin. Our results of gravity and magnetic data analysis support that the Yeongdong basin is a pull-apart basin formed by the left-stepping sinistral strike-slip fault, which formed the Okcheon fold belt.

Gwangju Shear Zone : Is it the Tectonic Boundary between the Yeongnam Massif and Okcheon Metamorphic Belt? (광주전단대 : 영남육괴와 옥천변성대의 지구조적 경계?)

  • Ha, Yeongji;Song, Yong-Sun;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • In this study we carried out SHRIMP U-Pb age dating of detrital zircons from age-unknown meta-sedimentary formations distributed around the NNE-SSW trending Gwangju Shear Zone, a branch of Honam Shear Zone, in the southwestern region of the Korean Peninsula. The meta-sedimentary formations from the west (Yeonggwang) and east (Jangseong) areas of the Gwangju Shear Zone have different patterns of zircon age distributions. Zircons of quartzites from the Yeonggwang area yield clusters at Neoarchean (ca. 2,500 Ma), Paleoproterozoic (ca. 1,860 Ma), Neoproterozoic (ca. 960 Ma) and Paleozoic (ca. 380 Ma) ages, but those of the Jangseong area yield clusters at only Neoarchean (ca. 2,500Ma) and Paleoproterozoic (ca. 1,880 Ma) ages. The contrastive patterns in age indicate that the meta-sedimentary formations from the west and east areas correspond to the meta-sedimentary formations of the Okcheon Metamorphic Belt and the sedimentary formations overlying on the Yeongnam Massif, respectively. The results imply that the Gwangju Shear Zone is the tectonic boundary between the Okcheon Metamorphic Belt and the Yeongnam Massif.

Stratigraphy and Geological Structure of the Northwestern Okcheon Metamorphic Belt Near the Chungju Area (충주지역 북서부 옥천변성대의 층서 및 지질구조)

  • Ryu, In-Chang;Kim, Tae-Hoon
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.9-25
    • /
    • 2009
  • The Northwestern Okcheon Metamorphic Belt in the Chungju area consists of the Munjuri Formation, the Daehyangsan Quartzite, the Hyangsanri Dolomite, and the Gyemyeongsan Formation, but the stratigraphy is still controversial. For a stratigraphic study, detailed stratigraphic sections were measured in two locations and mapping was carried out in the study area. The Munjuri Formation and the Daehyangsan Quartzite changed gradually in north and south section, but bedding parallel faults have developed in the boundary between two formations. The Daehyangsan Quartzite and the Hyangsanri Dolomite are conformable. Fault have developed in boundary between the Hyangsanri Dolomite and the Gyemyeongsan Formation. As a result of mapping in the study area, folding was recognized with $41^{\circ}/280^{\circ}$ plunging axis in the north part of the study area. Therefore, the bedding-parallel faults in the boundary might have occurred resulting from a layer parallel slip during the folding as well as the thrust. These results from this study and previous studies indicate that bedding-parallel faults in boundary between the Munjuri Formation and the Daehyangsan Quartzite are caused by a layer parallel slip during the folding. The fault between the Hyangsanri Dolomite and the Gyemyeongsan Formation is considered as a thrust fault, thereby the uppermost Gyemyeongsan Formation is placed under the Munjuri Formation. However the Gyemyeongsan Formation and the Munjuri Formation have similar age and rock composition. Hence, the Gyemyeongsan Formation is considered as an equivalent one with the Munjuri Formation. Therefore, the stratigraphy of Northwestern Okcheon Metamorphic Belt consists of the Gyemyeongsan/ Munjuri formations, the Daehyangsan Quartzite, and the Hyangsanri Dolomite in ascending order.