• Title/Summary/Keyword: Oil palm biomass

Search Result 26, Processing Time 0.025 seconds

Effect of New Organic Filler Made From Oil Palm Biomass on Paperboard Properties (오일팜 부산물을 이용한 유기충전제 제조 가능성 평가)

  • Lee, Ji Young;Kim, Chul Hwan;Sung, Yong Joo;Park, Jong-Hea;Kim, Eun Hea
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.61-67
    • /
    • 2015
  • As the production of palm oil has been increased, the generation of oil palm biomass is also increased and the utilization of the oil palm biomass become more significant topic. One third of the oil palm biomass is empty fruit bunch (EFB) and the other two thirds are oil palm trunks and fronds. However, the effective use of oil palm biomass has not been developed and most of it is discarded near oil palm plants. In this study, we investigated the applicability of EFB to the paperboard mills, as an organic filler. The new organic filler was manufactured in a laboratory by grinding and fractionating dried EFB powder, and its properties were analyzed. The particles of EFB organic filler were larger and more spherical than those of the commercial wood powder. The use of EFB organic filler resulted in a higher bulk of the handsheets with similar trends of physical strength, compared to those made with wood powder. It was concluded that EFB could be used as a raw material to manufacture organic filler for paperboard production.

Assessment of The Biomass Potential Recovered from Oil Palm Plantation and Crude Palm Oil Production in Indonesia (인도네시아 오일 팜 바이오매스 잠재량 평가)

  • Ahn, Byoung-Jun;Han, Gyu-Seoung;Choi, Don-Ha;Cho, Sung-Taig;Lee, Soo-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.231-243
    • /
    • 2014
  • In this study, the potential of biomass, which is generated from oil palm cultivation and crude palm oil (CPO) production of Indonesia was assessed in the aspect of energy content. The types of oil palm biomass were classified on the basis of the cultivation stage and the CPO production stage. In the cultivation stage, biomass is considered to be produced from its' root, trunk and frond. Other possible biomass resources such as empty fruit bunch (EFB), palm kernel shell (PKS) and fiber were included in the CPO production stage. As results, total biomass from damaged plantation area of Indonesia was estimated to be annually from 3 million to 16 million tons in 2011. From CPO mills, approximately 49 million tons/yr of biomass residues were estimated to be annually occurred. Their total energy content from each biomass source in cultivation stage was analyzed to be from 593,000 to 3,197,000 TOEs in terms of gross calorific value. In the case of CPO mills, around 22.7 million TOEs was estimated to be potential energy producible by biomass based on gross calorific value of dry basis. If moisture content considered, net calorific value was analyzed to be decreased to 16.3 million TOEs. Based on the results, the total energy contents of all oil palm biomass were estimated to be up to 25,919,000 TOE in terms of gross calorific value. CPO : Crude Palm Oil, EFB : Empty Fruit Bunch, FFB: Fresh Fruit Bunch, PKS : Palm Kernel Shell, OPF : Oil Palm Frond, PKOC : Palm Kernel Oil Cake, ISPO : Indonesia Sustainable Palm Oil Commission, TOE : Tone of Oil Equivalent.

Study of Oil Palm Biomass Resources (Part 1) - Characteristics of Thermal Decomposition of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 I - 오일팜 바이오매스의 열분해 특성 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Cho, Hu-Seung;Sim, Sung-Woong;Lee, Gyeong-Sun;Cho, In-Jun;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFP) and palm kernel shell (PKS) was used as raw materials for making pellets. EFB and PKS are valuable lignocellulosic biomass that can be used for various purposes. If EFB and PKS are used as alternative raw materials for making pellets instead of wood, wood could be saved for making pulps or other value-added products. In order to explore their combustion characteristics, EFB and PKS were analyzed using thermal gravimetric analyzer (TGA) with ultimate and proximate analyses. From the TGA results, thermal decomposition of EFB and PKS occurred in the range of 280 to $400^{\circ}C$ through devolatilization and combustion of fixed carbon. After $400^{\circ}C$, their combustion were stabilized with combustion of residual lignin and char. PKS contained more fixed carbons and less ash contents than EFB, which indicated that PKS could be more active in combustion than EFB.

Study of Oil Palm Biomass Resources (Part 2) - Manufacturing Characteristics of Pellets Using Oil Palm Biomass- (오일팜 바이오매스의 자원화 연구 II - 오일팜 바이오매스의 펠릿 제조 특성 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Cho, Hu-Seung;Kim, Sung-Ho;Sim, Sung-Woong;Yim, Su-Jin;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.42-51
    • /
    • 2013
  • In this study, oil palm biomass such as empty fruit bunch (EFB) and palm kernel shell (PKS) was used as raw materials for making pellets. Hardwood sawdusts were also mixed with EFB and PKS for making pellets. For improving a bad forming behavior in a pelletizer, 1 to 3 per cent of corn starch based on oven-dried weight biomass was added. The starch contributed to the decrease of dust generation in addition to the improvement of forming capability during pellet forming. Heating values of every pellets made of EFB and PKS were higher than 4,300 kcal/kg for the first grade pellet, irrespective of addition of sawdusts. However, the pellets made of EFB and PKS had ash contents over 3 per cent, which made it impossible to be applied for home use. Instead, they could be applied for industrial use. For studying their combustion characteristics, the pellets from the mixtures of EFB, PKS and sawdusts were analyzed using thermal gravimetric analyzer (TGA). From the TGA results, thermal decomposition of EFB and PKS occurred following three including endothermic reaction and dehydration, devolatilization of the major chemical components, and finally combustion of residual lignin and char.

Study of Oil Palm Biomass Resources (Part 3) - Torrefaction of Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 III - 오일팜 바이오매스의 반탄화 연구 -)

  • Cho, Hu-Seung;Sung, Yong Joo;Kim, Chul-Hwan;Lee, Gyeong-Seon;Yim, Su-Jin;Nam, Hyeo-Gyeong;Lee, Ji-Young;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.1
    • /
    • pp.18-28
    • /
    • 2014
  • Renewable Portfolio Standards(RPS) is a regulation that requires a renewable energy generated from eco-friendly energy sources such as biomass, wind, solar, and geothermal. The RPS mechanism generally is an obligatory policy that places on electricity supply companies to produce a designated fraction of their electricity from renewable energies. The domestic companies to supply electricity largely rely on wood pellets in order to implement the RPS in spite of undesirable situation of lack of wood resources in Korea. This means that the electricity supply companies in Korea must explore new biomass as an alternative to wood. Palm kernel shell (PKS) and empty fruit bunch (EFB) as oil palm wastes can be used as raw materials used for making pellets after their thermochemical treatment like torrefaction. Torrefaction is a pretreatment process which serves to improve the properties including heating value and energy densification of these oil palm wastes through a mild pyrolysis at temperature typically ranging between 200 and $300^{\circ}C$ in the absence of oxygen under atmospheric pressure. Torrefaction of oil palms wastes at above $200^{\circ}C$ contributed to the increase of fixed carbon with the decrease of volatile matters, leading to the improvement of their calorific values over 20.9 MJ/kg (=5,000 kcal/kg) up to 25.1 MJ/kg (=6,000 kcal/kg). In particular, EFB sensitively responded to torrefaction because of its physical properties like fiber bundles, compared to PKS and hardwood chips. In conclusion, torrefaction treatment of PKS and EFB can greatly contribute to the implement of RPS of the electricity supply companies in Korea through the increased co-firing biomass with coal.

A study of palm oil mill processing and environmental assessment of palm oil mill effluent treatment

  • Akhbari, Azam;Kutty, Prashad Kumaran;Chuen, Onn Chiu;Ibrahim, Shaliza
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.212-221
    • /
    • 2020
  • This work discusses the palm oil mill processing carried out at Jugra Palm Oil Mill Sdn Bhd, situated at Selangor, Malaysia with the capacity of 45-t fresh fruit bunch (FFB)/h. Typically, oil palm residues and palm oil mill effluent (POME) from FFB are generated while processing. Prior to discharge, POME should be treated to remove pollutants in the effluent. As such, the performances of anaerobic and aerobic ponds were assessed in this study to determine temperature, pH, biological oxygen demand (BOD), sludge volume index (SVI), and dissolved oxygen (DO). From the experiments, mesophilic temperature due to better process stability was applied in anaerobic ponds. The pH results displayed a fluctuating trend between lower control limit and upper control limit, and, the pH value increased from one pond to another. The final discharge BOD and SVI appeared to be lower than 100 mg/L and 10 mL/L indicating low degree of pollution and good settling ability for biomass/solid. DO was close to normal, mostly below 2 mg/L. The experimental outcomes revealed the effective treatability of POME in adherence to the standard regulation, which is the priority for environmental sustainability within this industry domain.

Study of Oil Palm Biomass Resources (Part 4) Study of Pelletization of Torrefied Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 IV - 반탄화된 오일팜 바이오매스의 펠릿 성형 특성 연구 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Lee, Ji-Young;Cho, Hu-Seung;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.24-34
    • /
    • 2015
  • Domestic companies supplying electricity must increase obligatory duty to use renewable energy annually. If not met with obligatory allotment, the electricity-supply companies must pay RPS (Renewable Portfolio Standards) penalty. Although the power plants using a pulverizing coal firing boiler could co-fire up to around 3 per cent with wood pellets mixed in with coal feedstock without any major equipment revamps, they recorded only about 60 per cent fulfillment of RPS. Consequently, USD 46 million of RPS penalty was imposed on the six power supplying subsidiaries of GENCOs in 2014. One of the solutions to reduce the RPS penalty is that the power supply companies adopt the co-firing of torrefied lignocellulosic biomass in coal plants, which may contribute to the use of over 30 per cent of torrefied biomass mixed with bituminous coals. Extra binder was required to form pellets using torrefied biomass such as wood chips, PKS (Palm Kernel Shell) and EFB (Empty Fruit Bunch). Instead of corn starch, 30, 50 and 70 per cent of Larix saw dusts were respectively added to the torrefied feedstocks such as Pinus densiflora chips, PKS and EFB. The addition of saw dusts led to the decrease of the calorific values of the pellets but the forming ability of the pelletizer was exceedingly improved. Another advantage from the addition of saw dusts stemmed from the reduction of ash contents of the pellets. Finally, it was confirmed that torrefied oil palm biomass such as PKS and EFB could be valuable feedstocks in making pellets through improved binding ability.

Potency of Botryococcus braunii cultivated on palm oil mill effluent wastewater as a source of biofuel

  • Azimatun Nur, Muhamad Maulana;Setyoningrum, Tutik Muji;Budiaman, I Gusti Suinarcana
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Indonesia is known as the largest oil palm producer in the world. However, along with the production, it generates wastes and pollution that caused the environmental problem in surrounding areas. Previous researchers reported that the high palm oil mill effluent (POME) concentration inhibited microalgae growth. However, the inhibition factor was not clearly explained by using kinetic model. This study presents kinetic models of Botryococcus braunii (B. braunii) cultivated on POME wastewater under different turbidity condition. Results showed that the growth model of Zwietering was closely suitable with experimental results. It was found that B. braunii was able to consume organic carbon from the POME wastewater on the logarithmic model. A modified kinetic model of Monod Haldane described the influence of turbidity and chemical oxygen demand on the cultivation. Turbidity of POME medium inhibited the growth rate at KI 3.578 and KII 179.472 NTU, respectively. The Lipid (39.9%), and carbohydrate (41.03%) were found in the biomass that could be utilized as biofuel source.

The Fuelization Study on the Oil Palm Frond Through Torrefaction (Oil Palm Frond의 반탄화를 통한 연료화 연구)

  • Lee, Myung Suk;Jeong, Gwangsik;Jung, Sang-Jin;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.465-469
    • /
    • 2013
  • In this study, we investigated the feasibility of torrefied OPF (oil palm fronds) as the fuel. The torrefaction was performed at 200, 250, 300 and $350^{\circ}C$ during 1 and 2 hours, respectively. As raising the torrefaction temperature and increasing the processing time, the GHV (gross heating value) of torrefied OPFs was increased. Moreover, we found that the torrefaction temperature is more important factor than the processing time. However, the proper torrefaction temperature was asked because the higher torrefaction temperature leaded to the lower torrefied OPF yield. TGA (thermo-gravimetric analysis) data released that the torrefaction at $250^{\circ}C$ could significantly decompose the hemicellulose and the almost cellulose was decomposed at $300^{\circ}C$. In addition, the grindability of biomass was improved after torrefaction, so that it can reduce energy consumption in comminution.

Effects of Pre-treatments on the Oil Palm EFB Fibers (오일팜 EFB 섬유의 전처리 영향 평가)

  • Kim, Dong-Seop;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.36-42
    • /
    • 2012
  • The empty fruit bunch fibers(EFB) of oil palm were examined for optimal utilization of the EFB fibers. The EFB fibers were obtained by shredding EFB, followe by removal of fines. The surface properties of the fibers were modified with various pre-treatments, such as hot water extraction, the soaking treatments with NaOH, $ClO_2$ and n-hexane. The changes in the fiber surface were examined with FT-IR method, which showed the changes in chemical compositions such as pectin, lignin, and etc. according to the pre-treatment methods. And the z-directional tensile testing of the fiber mold made of the treated EFB fibers showed the changes in the bonding strength by the pre-treatments. The fiber mold made of EFB fibers treated with $ClO_2$ showed the greater increase in the tensile energy absorption although the NaOH treatment resulted in the severer impact on the EFB fibers.