• Title/Summary/Keyword: Oil flow rate

Search Result 358, Processing Time 0.029 seconds

Behavior of Oil-Water Interface between Tandem Fences (이중 유벽 사이의 기름과 물의 계면의 거동)

  • Kang Kwan Hyoung;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.70-77
    • /
    • 1999
  • The disturbance of oil-water interface confined between tandem fences caused by a sequence of traveling vortices below the interface is investigated. The traveling vortices are assumed to be those detached from the tip of the fore fence. The potential flow is assumed and the density interface is replaced as a sheet of vortex. The shape of the interface is predicted by tracing a finite number of marker particles placed at the interface. The velocity of the marker particles is determined by the Biot-Savart integral along the vortex sheet plus the contribution from the traveling point vortices. The rate of change of vortex-sheet strength is predicted by using an evolution equation for vorticity. The calculated results obtained for various conditions demonstrate that the large amplitude of interfacial wave following the moving vortek can be generated by the vortices.

  • PDF

A Study on Flow Characteristics of Polluted Air in Rectangular Tunnel Models Using a PIV System

  • Koh, Young-Ha;Park, Sang-Kyoo;Yang, Hei-Cheon;Lee, Yong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.825-832
    • /
    • 2010
  • The objective of this study is to investigate flow behaviors of polluted air in order to prevent the impact of disaster in a tunnel. This paper presents the experimental results qualitatively in terms of flow characteristics in two kinds of rectangular tunnel models in which each distance from the centerline above the inlet vent to the exhaust vent is 0 and 60 mm, respectively. The olive oil is used as the tracer particles. The flow is tested at the flow rate of $14.16{\times}10^{-4}\;m^3/s$ and the inlet vent velocity of 1.1 m/s with the kinematic viscosity of air. The aspect ratio of the model test section is 10. The average velocity vectors, streamlines, and vorticity distributions are measured and analyzed by the Flow Manager in a particle image velocimetry(PIV) system. The PIV technology gives three different velocity distributions according to observational points of view for understanding the polluted air flow characteristics. The maximum value of mean velocity generally occurs in the inlet and outlet vent regions in the tunnel models.

Groundwater Flow Modeling and Suggestion for Pumping Rate Restriction around K-1 Oil Stockpiling Base with Geological Consideration (지질조건을 고려한 K-1 비축기지 주변의 지하수 모델링과 양수량 제한구역 제안)

  • Moon, Sang-Ho;Kim, Kue-Young;Ha, Kyoo-Chul;Kim, Young-Seog;Won, Chong-Ho;Lee, Jin-Yong
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.169-181
    • /
    • 2010
  • This study aimed at simulating several responses to stresses caused by the ground water level variations around the K-1 oil stockpile. For this simulation, we considered the characteristic hydrogeological condition including the special occurrence of long and thick acidic dyke, which is regarded as the main geological structure dominating the ground water flow system at this study area. We activated twenty-four imaginary wells which are located in northern and southern area around central K-1 site. Each neighboring distance is altogether 300 m and whole distance between K-1 site and remote wells is 1,200 m. Through the modeling, we operated the long-term and continuous pumping tests and finally categorized five zones based on maximum pumping rates for the imaginary wells; zone I within 300 meter distance from K-1 site with a pumping rate of 50 $m^3/day$; zone II between 300 to 600 meter distance from K-1 site with a pumping rate of 75 $m^3/day$; zone III between 600 to 900 meter distance from K-1 site with 150 $m^3/day$; zone IV between 900 to 1,200 meter distance from K-1 site with 300 $m^3/day$; and zone V of acidic dyke area. At zone V, especially because of their possibility of high transmissivity for groundwater flow, it is necessary to control and restrict groundwater discharge.

An Experimental Study on Characteristics of Cooler by Oil Pressure for Decreasing Heat Load in Cold Storage (냉동창고 내 열부하 감소를 위한 유압 구동식 냉각기의 특성에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1116-1122
    • /
    • 2009
  • As a result of this study, we reached the following conclusions. With appropriate setting of oil pressure and flow rate, it operated same rotation speed with existing cooler by electrical transmission. In initial operation, a temperature of a cold storage is lower rapidly. As an internal temperature of a cold storage is lower, a decreasing rate of temperature is lower. As a result of comparing the both type, the cooler of oil pressure type showed the following results. The decreasing rate of temperature was more faster and shorter operating time was more shorter than existing cooler of electric type. The actual case of a cold storage, the cooler of oil pressure type can prevent quality deterioration and decrease power consumption. As an internal temperature of a cold storage is lower, power consumption increased rapidly, the oil pressure type showed lower power consumption. COP of two of these types decreased continuously as the internal temperature of a cold storage being reach setting temperature, and that of oil pressure type showed higher amount about 25%. As a setting temperature is lower, the number of refrigerator's operating times are less and operating time is longer, so power consumption is increased in the maintenance of a cold storage's internal temperature, power consumption of hydraulic type showed lower amount about 21~25% in two of these types.

A Numerical Analysis on Prediction of Cut-diameter according to Vane Outflow Angle in the Axial-flow Cyclone (축상유입식 사이클론의 베인 유출각도에 따른 절단입경 예측에 관한 수치해석)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.111-117
    • /
    • 2012
  • Dust collecting performance of axial-vane type cyclone for oil mist was analyzed in this study. For predicting cut diameter size of cyclone, the number and angle of vane ($tan{{\beta}_2}^{\prime}$) was simulated by CFD. As the result, $tan{{\beta}_2}^{\prime}$ was decreased as the number of vane was increased and the angle of inclination(${{\beta}_2}^{\prime}$) decreased, and it cause strong swirl flow. Therefore, it could be confirmed that as the number of vane was increased and the angle of inclination was decreased, cut diameter size was decreased. Also, by verifying the results of CFD through experiment, the cut diameter size could be $2{\mu}m$ at $4m^3/min$ of flow rate.

Experimental Analyses of Flow in a Production Torque Converter Using LDV (LDV를 이용한 토크컨버터 내 유동의 실험적 분석)

  • Yoo, S.C.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.757-762
    • /
    • 2018
  • LDV(laser Doppler velocimetry) measurements were conducted on the exit region of the impeller passage and the gap between the impeller and turbine blades under 0.8 speed ratio. The 0.8 speed ratio has an impeller speed of 2000rpm and a turbine speed of 1600rpm. A periodic variation of the mass flow rate is present in many of the measurements made. The frequency of this variation is the same as the frequency of the turbine blades passing the impeller passage exit. It is found that the instantaneous position of the turbine had effect on fluid flow inside the impeller passage and gap region. This study would aid in the construction of higher accuracy CFD models of this complex turbomachinery device.

CFD Analysis on the Performance and Internal Flow of a Micro Cross-Flow Hydro Turbine in the Range of Very Low Specific Speed (극저비속도 영역 마이크로 횡류수차의 성능 및 내부유동 수치해석적 연구)

  • Choi, Young-Do;Son, Sung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.25-30
    • /
    • 2012
  • Renewable energy has been interested because of fluctuation of oil price, depletion of fossil fuel resources and environmental impact. Amongst renewable energy resources, hydropower is most reliable and cost effective way. In this study, to develop a new type of micro hydro turbine which can be operated in the range of very low specific speed, a cross-flow hydro turbine with simple structure is proposed. The turbine is designed to be used at the very low specific speed range of hydropower resources, such as very high-head and considerably small-flow rate water resources. CFD analysis on the performance and internal flow characteristics of the turbine is conducted to obtain a practical data for the new design method of the turbine. Results show that optimized arrangement of guide vane angle and inner guide angle can give contribution to the turbine performance improvement.

Flow Stress Properties of Electric Resistance Welded Small-Sized Subsea Pipeline Subjected to Temperature and Strain Rate Variations (심해저용 전기 저항 용접 소구경 송유관 소재의 온도 및 변형률 속도 에 따른 유동 응력 특성)

  • Kim, Younghun;Park, Sung-Ju;Yoon, Sung-Won;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • A subsea pipeline for oil/gas transportation or gas injection is subjected to extreme variations in internal pressure and temperature, which can involve a strain rate effect on the pipeline material. This paper describes the flow stress characteristics of a pipeline material called API 5L X52N PSL2, using and experimental approach. High-speed tensile tests were carried out for two metal samples taken from the base and weld parts. The target temperature was 100℃, but two other temperature levels of –20℃and 0℃ were taken into account. Three strain rates were also considered for each temperature level: quasi static, 1/s, and 10/s. Flow stress data were proposed for each temperature level according to these strain rates. The dynamic hardening behaviors of the base and weld metals appeared to be nonlinear on the log-scale strain rate axis. A very high material constant value was required for the Cowper-Symonds constitutive equation to support the experimental results.

Evaluation of removal performance of a novel two-stage cylinder type cyclone against water and oil droplets (2단 실린더형 싸이클론의 물 및 오일 액적 제거 성능 분석 연구)

  • Kim, Sumin;Kim, Hak-Joon;Kim, Myungjoon;Han, Bangwoo;Woo, Chang Gyu;Kim, Yong-Jin
    • Particle and aerosol research
    • /
    • v.13 no.3
    • /
    • pp.119-125
    • /
    • 2017
  • A novel two stage cylindrical cyclone was developed for a 3 phase separator in shale oil production industry. The cyclone performance was compared with a cone type cyclone and multi cyclone at the same experimental condition using water and oil mists generated by a humidifier and atomizer at the flow rate 1 to $2m^3/min$. The removal efficiency of total suspended water droplets by the novel cyclone, calculated using inlet and outlet concentrations measured by an optical particle counter, was 99% which is higher than 90% of oil droplet removal efficiency at $2m^3/min$. It might be due to the evaporation of small water droplets during the tests. The water and oil droplet removal performance of the novel cyclone based on the quality factor which is a function of pressure drop and removal efficiency was the highest among three cyclones. The results indicate that the cyclone could be an economical device to remove water and oil mists from shale gas generation processes where a huge three phase separator is commonly used.

Development of an Oil Mist Collector Equipped with Centrifugal De-oiling System (원심력 필터 재생기능을 갖춘 오일 미스트 여과 집진장치 개발)

  • Kim, Tae-Hyeung;Seo, Jeoung-Yoon;Ha, Hyun-Chul;Kim, Jong-Cheul;Cho, Jin-Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.166-175
    • /
    • 2005
  • Health effects associated with metal working fluid (MWF) exposures include dermatitis, respiratory disease, hypersensitive pneumonitis, and asthma. Frequently, occupational exposures to MWFs are controlled by ventilating an enclosure with an air cleaning unit that includes a fan preceded by various kinds of filtration. There are several kinds of air cleaning units used in machining centers. But the associated troubles have hindered from efficiently using these devices. The main problem is the relatively short period of filter replacement. The reason is that the air cleaning units usually do not have the de-oiling systems, thus leading the earlier clogging of filters and reducing the flow rate of hood. Thus, the first stage of study was conducted to overcome this problem by developing the new oil mist collector equipped with the easy de-oiling system. The principle of de-oiling is that the centrifugal force generated by spinning the drum covered by filter fabric separates oils from the filter fabric. It would be very similar to the spin-dry laundry. By adopting this de-oiling technique, the problems associated with the conventional oil mist collectors could be solved. Several tests/analyses were performed to make the lab-scale oil mist collector. The collection efficiencies and the de-oiling efficiencies of commercially available filter fabrics were tested. Subsequently, the endurance test were conducted by observing SEM photos of filter fabrics and measuring tensile strength/expansion coefficient after spinning the filter drum for 20 minutes at the different rotation speeds. By doing these experiments, the most appropriate filter fabric and rotation speed/duration were selected. Finally, the new oil mist collector was designed. In the near future, this device must be tested in the real machining center.