• Title/Summary/Keyword: Oil flow

검색결과 1,074건 처리시간 0.028초

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제20권12호
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • 제46권1호
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.

Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship

  • Jang, Jinho;Choi, Soon Ho;Ahn, Sung-Mok;Kim, Booki;Seo, Jong Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.363-379
    • /
    • 2014
  • In an effort to cope with recent high oil price and global warming, developments of air lubricated ships have been pursued to reduce greenhouse gas emissions and to save fuel costs by reducing the frictional resistance. In this study, reduction in the frictional resistance by air lubrication with air layers generated on the lower surface of a flat plate was investigated experimentally in the large water tunnel of SSMB. The generated air layers were observed, and changes in the local frictional drag were measured at various flow rates of injected air. The results indicated that air lubrication with air layers might be useful in reducing the frictional resistance at specific conditions of air injection. Accordingly, resistance and self-propulsion tests for a 66K DWT bulk carrier were carried out in the towing tank of SSMB to estimate the expected net power savings.

A Study on the Thermal Characteristics of Dry Vacuum Pump with Vertical Screws (수직형 건식 진공 스크류 펌프의 열특성에 대한 연구)

  • Chang, Moon-Suk;Park, Jae-Hyun;Kim, Soo-Tae;Kim, Il-Gon;Cho, Seong-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제14권2호
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, analysis and experiments were carried out on temperature distributions and thermal deformations in a dry vacuum pump with vertical screws for safe operation. When a vacuum pump is working, it is necessary to get rid of the heat generated by the friction of bearings and the compression of air to prevent the vacuum pump from being damaged by interference between two screws and housing through thermal deformation. Additional cooling was proposed by using oil flow through the inner channel of the rotating axis for lower temperature control of the vacuum pump. Analysis and experimental results were compared in terms of temperature distribution and thermal deformation of the vacuum pump, and two sets of results matched reasonably well. These results for a dry vacuum pump with vertical screws can be used in similar model development and can minimize errors in design and manufacture by providing reasonably accurate prediction in advance.

Measuring Convective Heat Transfer Coefficient of Nanofluids Considering Effect of Film Temperature Change over Heated Fine Wire (막온도 변화를 고려한 가는 열선주위 나노유체의 대류열전달계수 측정 실험)

  • Lee, Shinpyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제37권8호
    • /
    • pp.725-732
    • /
    • 2013
  • This study examined the convective heat transfer characteristics of nanofluids flowing over a heated fine wire. Convective heat transfer coefficients were measured for four different nano-engine-oil samples under three different temperature boundary conditions, i.e., both or either variation of wire and fluid temperature and constant film temperature. Experimental investigations that the increase in the convective heat transfer coefficients of nanofluids in the internal pipe flow often exceeded the increase in thermal conductivity were recently published; however, the current study did not confirm these results. Analyzing the behavior of the convective heat transfer coefficient under various temperature conditions was a useful tool to explain the relation between the thermal conductivity and the boundary layer thickness of nanofluids.

Part Load Performance Characteristics of Domestic Wood Pellet Boiler (가정용 목재 펠릿 보일러에 대한 부분부하 운전 특성)

  • Kang, Sae Byul;Kim, Jong Jin;Kim, Hyouck Ju;Park, Hwa Choon;Choi, Kyu Sung;Sim, Bong Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.103.1-103.1
    • /
    • 2010
  • Recently domestic wood pellet boilers are installed in rural and forestry houses. The fuel price per lower heating value of wood pellet is about 20 % lower than that of heating oil on July 2010. In spite of lower price of wood pellet, a few user of wood pellet boiler complain expensive fuel cost. One of this reason is inaccurate or improper air-fuel ratio setting of wood pellet boiler. O2 concentration of flue gas of domestic wood pellet boiler is about 9.7 % and there are few domestic wood pellet boiler which can control air-fuel ratio automatically. We tested a domestic wood pellet boiler in changing boiler thermal output and air-fuel ratio. The nominal boiler thermal output is 25 kW (21 500 kcal/h). We measured thermal efficiency and flue gas concentrations such as CO and NOx at each boiler thermal load with various air-fuel ratio. The results show that if air flow rate is the same as full load and part load, thermal efficiency of part load of 40 % drops about 7.7 %p compared to boiler full load case.

  • PDF

Catalytic hydrogenation-assisted preparation of melt spinnable pitches from petroleum residue for making mesophase pitch based carbon fibers

  • Lee, Dong Hun;Choi, Jisu;Oh, Young Se;Kim, Yoong Ahm;Yang, Kap Seung;Ryu, Ho Jin;Kim, Yong Jung
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.28-35
    • /
    • 2017
  • We demonstrated an effective way of preparing melt spinnable mesophase pitches via catalytic hydrogenation of petroleum residue (fluidized catalytic cracking-decant oil) and their subsequent thermal soaking. The mesophase pitches thus obtained were analyzed in terms of their viscosity, elemental composition, solubility, molecular weight, softening point and optical texture. We found that zeolite-induced catalytic hydrogenation under high hydrogen pressure contributed to a large variation in the properties of the pitches. As the hydrogen pressure increased, the C/H ratio decreased, and the solubility in n-hexane increased. The mesophase pitch with entirely anisotropic domains of flow texture exhibited good meltspinnability. The mesophase carbon fibers obtained from the catalytically hydrogenated petroleum residue showed moderate mechanical properties.

The Search for Inhibitory Effect of Aroma Therapy on Allergic Asthma by Flow cytometer (유세포 형광 분석기를 통한 아로마 요법의 알러지 천식 억제 효과 탐색)

  • Kim, Gyu;Yun, Mi-Yeong;Kim, Dong-Hui
    • Journal of Haehwa Medicine
    • /
    • 제12권2호
    • /
    • pp.145-156
    • /
    • 2004
  • The purpose of this study was to investigate the inhibitory effect of the aroma therapy of three kinds of aroma oil mixtures on asthma. 1. The percentage of granulocytes/lymphocytes population in mouse OVA-induced asthma lung cells was decreased significantly compared with those of control group. 2. The number of CCR3+ cells, CD4+ cells, CD8+ cells, CD23 and CD3e+/CD69+ in lungs of the mice group treated with M1 were decreased significantly compared with those of control group. 3. The number of IgE+/B220+ cells in the lungs of the mice group treated with M1 decreased significantly compared with those of control group. But the number of B220+ cells in the lunes of the mice group treated with M1 didn't show significant difference compared with those of control group. 4. The number of Gr-1+/CD11b+ cells in lungs of the mice group treated with M1 didn't show significant difference compared with those of control group. But the number of CD11b+ cells in lungs of the mice group treated with M1 decreased significantly compared with those of control group.

  • PDF

Design of Variable Speed SRM Drive for Hydraulic Pump Application (유압펌프용 가변속 SRM 구동시스템 설계)

  • Lee, Dong-Hee;Kim, Bong-Chul;An, Young-Joo;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 2006
  • This paper proposes an SRM drive system to improve the drive efficiency of the hydraulic system. From the maximum hydraulic pressure and flow rate required by the hydraulic system, a proper SRM is designed and tested. The proposed SRM drive system controls oil pressure of the hydraulic system as well as motor speed. A 2.2[kW], 12/8-pole SR motor and digital controller based DSP are designed and tested for hydraulic pump system. The test results show that the system has some good features such as high efficiency and rapid response characteristics.

The heat transfer characteristics of supercritical $CO_2$ in a horizontal tube (수평관내 $CO_2$의 초임계 영역내 열전달에 관한 연구)

  • Oh Hoo-Kyu;Lee Dong-Geon;Son Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.526-532
    • /
    • 2005
  • The cooling heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter. a pre-heater and gas cooler(test section). The test section consists of a smooth, horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $400\;kg/m^{2}s$ and the inlet cooling pressure of 7.5 MPa to 10.0 MPa. The variation of heat transfer coefficient tends to decrease as cooling pressure of $CO_2$ increases. The heat transfer coefficient with respect to mass flux increases as mass flux increases. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with that predicted by Blasius's correlation. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Bringer-Smith.