• Title/Summary/Keyword: Oil flow

Search Result 1,074, Processing Time 0.032 seconds

An Experimental Study on the Parallel plate Arrangement and Oil/water Separation Efficiency for Plate type Oily water Separator (분리판식 유수분리기의 평행판 배열과 유수분리 효율에 관한 실험적 연구)

  • Han Won-Hui;Kim Gwang-Su;Lee Jin-Yeol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.2
    • /
    • pp.52-60
    • /
    • 2001
  • The need to control the oil content in oily bilge water discharges to meet the increasing stringent seawater pollution standards has led to the development of gravity type separators. Among the several gravitational methods, a plate type oily water separator can be used as an assistant equipment for the oil filtering system to meet the present IMO standard of 15 ppm, because it is believed to be an efficient method dealing with a large amount of rich oil with high specific gravity. The purpose of this paper is to examine the efficiency of oil/water separation with the characteristics of separating plate arrangement. An experimental study was carried out to analyse an efficient treatment oil-water mixture with variation of operating parameters, including flow rates, inlet oil concentrations and the height between the plates. The experimental results show that the height between the plates has a significant effect on the separation efficiency. The best efficiency was acquired when the ration of the height between the plates the plates to distance(H/Ci) was 2 with lower inlet oil concentration and lower flow rate.

  • PDF

Development of a Visual Hydraulic Oil System for the Efficient Hydraulic Oil Experiment Education (효율적인 유압 실험실습교육을 위한 비주얼 유압 시스템 개발)

  • Roh Hyung-Woon;Kim Jae-Soo;Kim Wook;Lee Hee-Sang
    • Journal of Engineering Education Research
    • /
    • v.4 no.2
    • /
    • pp.11-19
    • /
    • 2001
  • Current educational hydraulic oil systems consist of the composites for the hydraulic circuits. These systems not only could attract students' interests, but also increase the teaching efficiency during the lectures. Thus, the visual hydraulic oil system has been developed to enhance educational efficiency and to improve learning methods. With this new system, the students can easily examine the oil flow for hydraulic oil parts in mechanical engineering experiments. In order to develop the new system, the hydraulic constitute was made of acryl resin, and previous pipes were replaced by transparent and flexible tubes. Red colored oil was also used to visualize the oil flow. Furthermore, if OHP (Over Head Projector) was used for a theoretical lectures, the visual units can be used to classify the differences of the valve structure or the circuits. If lecturers use the developed visual hydraulic system, students can make an effective experiment on the basic theories and principles. Therefore, we can promote the students' interests and materialize the objectives of the subject. The results of this paper can be widely used to improve the efficiency of the mechanical engineering education.

  • PDF

A Study on the Heat Transfer Characteristics Around a Surface-Mounted Air-Cooled Module for the Flow Angle-of-Attack (흐름 영각에 따른 강제공랭 모듈 주위의 열전달 특성에 관한 연구)

  • Park, Sang-Hui;Sin, Dae-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1267-1275
    • /
    • 2002
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around a module cooled by forced air flow. The flow angle of attack to the module were 0$^{\circ}$and 45$^{\circ}$. In the first method, inlet air flow(1~7m/s) and input power.(3, 5, 7W) were varied after a heated module was placed on an adiabatic floor(320$\times$550$\times$1㎣). An adiabatic wall temperature was determinated to use liquid crystal film. In the second method to determinate heat transfer coefficient, inlet air flow(1~7m/s) and the heat flux of rubber heater(0.031~0.062W/$m^2$) were varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. Additional information is visualized by an oil-film method of the surface flow on the floor and the module. Plots of $T_{ad}$ and $h_{ad}$ show marked effects of flow development from the module and dispersion of thermal wake near the module. Certain key features of the data set obtained by this investigation may serve as a benchmark for thermal-design codes based on CFD.

Visualization of Flow inside the Side Channel Type Regenerative Blower (사이드 채널형 재생블로워의 내부 유동 가시화)

  • Yang, Hyeonmo;Lee, Kyoung-Yong;Choi, Youngseok;Jeong, Kyungseok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.24-28
    • /
    • 2013
  • Visualization of internal flow of a regenerative blower has been made by injecting a tracer directly into the flow. For the convenience of visualization, working fluid has been replaced by water and marbling color oil has been used as a tracer. Oil droplet has been injected near the inlet of the blower and the streak has been recorded using a high speed camera with the illumination of high power light sources. At first, droplets have irregular motion in the near inlet area and enter into a groove of the impeller. Then the droplets circulate inside the groove while translated by the rotational motion of the impeller. When the droplets get out of the impeller groove, their speed is lower than that of impeller. And the droplets repeatedly enter into the groove and circulate inside the grooves. Then the droplets either flow to the outlet or reenter into the inlet area through stripper. Through this experimental study, internally circulating motion of the flow inside a regenerative blower has been characterized.

A Study on Bubbly Lubrication of High-Speed proceeding Bearing Considering Live Surface Tension

  • Chun, S.-M.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.111-112
    • /
    • 2002
  • The influence of aerated oil on a high-speed proceeding bearing is examined by using the classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing including the live surface tension of aerated oil. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The considered parameters for the study of bubbly lubrication are oil aeration level, air bubble size and shaft speed. The results show that, if the live surface tension is considered, the effect of air bubbles on the bearing load capacity is reduced due to temperature engagement comparing with that under the condition of a constant surface tension.

  • PDF

Visualization and Quantification of Oil Behavior inside Rotary Compressor (로터리 압축기 내부의 오일 거동 가시화 및 정량화)

  • Cho, Pil-Jae;Kim, Yoon-Seok;Lee, Seung-Kap;Youn, Young;Ko, Han-Seo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1580-1585
    • /
    • 2004
  • A quality of a refrigeration cycle and a reliability of a compressor can be reduced if a refrigerant including excessive lubricating oil is exhausted from the compressor. Thus, the analysis of the oil behavior inside the compressor is required to prevent the problem. A tested rotary compressor with visualization windows has been manufactured in this study to investigate the oil behavior using developed visualization techniques. The oil behaviors at various operating conditions have been quantified to obtain the relationship with the outlet pressure inside the compressor. Also, the effect of the operating conditions on the quantity of the exhausted oil from the rotary compressor has been investigated using the visualization technique.

  • PDF

Analysis of Oil Behavior inside Rotary Compressor Using Developed Visualization Technique

  • Cho Pil-Jae;Lee Seung-Kap;Youn Young;Ko Han-Seo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2006
  • An efficiency of a refrigeration cycle and a reliability of a compressor can be reduced if a refrigerant including excessive lubricating oil is exhausted from the compressor. Thus, the analysis of the oil behavior inside the compressor is required to prevent the problem. A tested rotary compressor with visualization windows has been manufactured. in this study to investigate the oil behavior using developed visualization techniques. The oil behaviors at various operating conditions have been quantified to obtain the relationship with the outlet pressure inside the compressor. Also, the effect of the operating conditions on the quantity of the exhausted oil from the rotary compressor has been investigated using a manufactured test model.

An Analysis on Charateristics of Separate Oiling to Reduce Oil Consumption for a 2 Stroke Free-Piston H2 Engine (오일 소모 저감을 위한 역단류 2행정 프리피스톤 수소기관의 분리 윤활 특성 해석)

  • Byun, Cahng-Hee;Baek, Dae-Ha;Lee, Jong-Tae
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.6
    • /
    • pp.794-799
    • /
    • 2011
  • In order to reduce the oil consumption for a 2 stroke free piston hydrogen fueled engine, the behaviors of residual lubricant oil of the cylinder wall surface were visualized and oil mass emitted into exhaust port was measured by using research engine with cross-head and eccentric crankshaft. As the results, it was shown that characteristics of residual lubricant oil such as oil thickness and distribution were remarkably different from a conventional 4 stroke engine. It was also analyzed that these tendencies relied on the configuration and installed position of the exhaust port, piston pin boss and so on.

Thermohydrodynamic Bubbly Lubrication Analysis of High-Speed Journal Bearing (공기 혼합오일에 대한 고속 저어널 베어링 열유체 윤활 해석)

  • 전상명
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.321-334
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing Is examined by thermohydrodynamic lubrication theory to lubrication with mixtures of a Newtonian liquid and an ideal gas. For this purpose, analytical models for viscosity and density of aerated oil in fluid-film bearing are applied. Convection to the walls, mixing with supply oil and re-circulating oil, and some degree of journal misalignment are considered. The results show that deliberate oil aeration can increase the load capacity of high-speed plain Journal bearing. And the load capacity is increased more by oil aeration under the conditions of shaft misalignment and higher speed.

Experimental Thermal Analysis of Hydraulic System in a Special Vehicle (특장차량 유압시스템 내 열적 특성 분석)

  • Choi, Yu Hyun;Lee, Sang Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.85-91
    • /
    • 2011
  • Experimental analysis has been carried out to investigate thermal characteristics of hydraulic system in special vehicles. Hydraulic system performance is largely influenced by oil temperature, and there are considerable performance decline and malfunctions in the system for high temperature conditions caused by heavy load and continuous operation. Transient oil temperature and pressure variation are analyzed and heat generation rates in the several main system parts are compared for various flow rates. With the start of system operation oil temperature gradually increases, and viscosity deceases by about 70% as temperature increases from $20^{\circ}C$ to $80^{\circ}C$. Operation pressure in the hydraulic system decreases with oil temperature, and its variation rate becomes less steep as oil temperature increases. Heat generation rate in hydraulic pump also depends on the oil temperature, and it reaches maximum near $50^{\circ}C$. These results in this study can be applied to optimal design of efficient hydraulic system in special vehicles.