• Title/Summary/Keyword: Oil fire

Search Result 225, Processing Time 0.024 seconds

development of small size corrosion monitoring system for under ground metal structures (지중 금속구조물 부식감시를 위한 측정단자함 인입형 소형 계측 장치개발에 관한 연구(II))

  • Lee, Jae-Duck;Bae, Jeong-Hyo;Ha, Tae-Hyun;Lee, Hyun-Gu;Ha, Yun-Chul;Kim, Dae-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.104-106
    • /
    • 2004
  • There are many under grounds facilities like oil pipes, gas pipes, water pipes, oil tanks, etc. and severe corrosion of these facilities made big problems. Fire, wide area water and soil pollution, massive and hazardous explosion, etc. can make big problems and cause big economical loss. So, various technologies were developed to keep these undergrouns facilities safely, and cathodic protection is one of it. For cathodic protection, one must detect potential of pipes, and there are so many test box to check pipes potentials. In this thesis, we describe on the development of small size corrosion monitoring system that measure pipes potentials easily and economically.

  • PDF

Analysis of the Insulation Resistance Trend according to the Installation Environment of the Electric Wiring of the Melting Furnace (용해로 전기배선의 설치환경에 따른 절연저항 추이 분석)

  • Suk Bong Ko;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.15-22
    • /
    • 2023
  • In this study, the process and the environment of a melting furnace, located in Workplace A in Chungnam Province was inspected, and the insulation resistances of electrical circuits and motors were measured, and their changes over five years (2017-2021) were analyzed. It was found that the exhaust fan, oil pumps #A and #B, and heater were installed in 2010. Their insulation resistances decreased from 2017. Specifically, the insulation resistance of Oil Pump #A decreased from 100 (㏁) in 2018 to 20(㏁) in 2021, an 80% reduction. The fast decrease in insulation resistance was due to the high temperature of the melting furnace affecting surrounding the electrical facilities. A safety management scheme on the electrical facility of the melting furnace was proposed.

Surface Ageing Property of Polymer Insulator for Transmission line with Forest Fire Test (H종 주상용 몰드 변압기의 덕크구조에 따른 열해석 특성)

  • Cho, Han-Goo;Kim, Kyang-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.111-111
    • /
    • 2010
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss, but it needs some cooling method because heat radiation between each winding is difficult. In this paper, the temperature distribution and thermal stress analysis of H class 100kVA pole cast resin transformer for power distribution are investigated by FEM program.

  • PDF

A Study of Separation of γ-linolenic acid with Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 감마 리놀렌산의 분리에 대한 연구)

  • Cho, In-Ho;Sang, Hie-Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 2007
  • In different approaches were extracted from evening primrose seed by supercritical fluids carbon dioxide and for comparison with hexane as solvent. The extracts have been analyzed qualitatively and quantitatively to evaluate yield and selectivity of ${\gamma}$-linolenic acid. The yields extracts with supercritical fluids carbon dioxide were higher than those with hexane. When this process produces commercially, will get a many economic profit.

  • PDF

Basic Study on Flashover Characteristics of Power Lines by Forest Fire(II) (산불화재에 의한 전력선 섬락사고 기초연구(II))

  • Kim, C.N.;Lee, S.W.;Lee, K.S.;Kim, I.S.;Lee, D.I.;Park, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.391-394
    • /
    • 2001
  • Occurring forest fire or burning bushes beneath overhead transmission lines have caused system disturbances in many countries. In this study, various tests in the simulated condition of power lines were conducted so as to investigate the reduction in insulation strength caused by combustion flame. The results of an experimental investigation into the flashover characteristics of air dielectric strength in the presence of oil flame are reported. It is demonstrated that flame can reduce by more than half, 80% in maximum, the breakdown voltage of a model line.

  • PDF

Experimental investigation on thermal behavior, sound absorption, and flammability of natural fibre polymer composites

  • Ravi Kumar, B.;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • Exhausting oil resources and increasing pollution around the world are forcing researchers to look for new, renewable, biodegradable materials to lead sustainable development. The use of fiber reinforced composites based on natural fibres has increasingly begun as prospective materials for various engineering applications in the automotive, rail, construction and aerospace industries. The natural fiber chosen to make the composite material is plant-based fibre, e.g. jute fibre, and hemp fibre. Thermosetting polymer based Epoxy (LY556) was utilized as matrix material and The composites were produced using hand lay-up technique. The fabricated composites were tested for acoustic testing, thermo-gravimetric analysis (TGA) and flammability testing to asses sound absorption, thermal decomposition and fire resistivity of the structures. Hemp fibre composites have shown improved thermal stability over Jute fibre composites. However, the fire resistance characteristics of jute fibre composites are better as compared to hemp fibre composites. The sound absorption coefficient of composites was found to enhance with the increase of frequency.

The Lightning Impulse Properties and Breakdown Voltage of Natural Ester Fluids Near the Pour Point

  • Choi, Sun-Ho;Huh, Chang-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.524-529
    • /
    • 2013
  • Recently, researchers have become interested in natural ester fluids, as they are an environmentally friendly alternative to mineral oils. Natural ester fluids are a natural resource made from plants; they have higher biodegradability, flash, and fire points, and a greater permittivity compared to conventional mineral oils. However, natural ester fluids also have a higher pour point, viscosity, and water content. These characteristics can hamper circulation and impair the electrical properties of an oil-filled transformer. A large amount of data has been accumulated over the years in regards to mineral insulating oil involving dielectric breakdown voltage and lightning impulse tests. However, natural ester fluids have not had their electrical properties sufficiently characterized. In this paper, we present an investigation into the characteristics of the electrical discharge development in natural ester fluids and in an oil-filled transformer near the pour points. The experiment results show that the electrical properties decreased according to a decrease in the ambient temperature and freezing time. It was found that the pour point and water content of natural ester fluids have a significant effect on the electrical properties.

Influence of Combustion Flame on Flashover Characteristics Due to Fire Occurrence (화재발생시 직류 플래시오버특성에 미치는 연소화염의 영향)

  • 하장호;김인식;정우영
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.25-34
    • /
    • 2003
  • In this paper, characteristics of the DC flashover voltage in the horizontal air gap of sphere-sphere/needle-needle electrode system were investigated when the combustion flame of paraffin oil was present between the two electrodes. The reduction characteristic of DC flashover voltage was discussed with the thermal ionization process, the relative air density and the deflection phenomena in the shape of flames that caused by the corona wind and Coulomb's force. As the results of an experimental investigation, It was found that the reduction characteristics of DC flashover voltages with flames were affected strongly by the flame deflection and the change of relative air density. It was also found that the thermal ionization phenomena were not important in the range of combustion flame temperature.

Application of Water Mist System for a Power Transformer Room -Cooling Characteristics (Part 2) (변압기실 화재에 대한 미분무수 소화시스템의 적용 -냉각특성을 중심으로(Part 2))

  • Choi Byung-Il;Han Yong-Shik;Kim Myung-Bae
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.37-41
    • /
    • 2005
  • The present study describes the cooling performance of two kinds of water mist systems used in fire extinguishment. The cooling is necessary for the prevention of an auto re-ignition of the power transformer. A heat source for such the re-ignition is the accumulated thermal energy in the dielectric oil from the transformer core. Because of the weight of the real core, reduced-scale experiments are carried out. A similarity analysis Is also performed to determine the discharge time of the water mist systems from the experimental results. The discharge time to prevent the re-ignition in the real-scale transformer is estimated about 12 hour from the similarity analysis of the reduced-scale experiments.

A Study on the Damage to a Concrete Bridge Pier due to Fire (화재를 입은 콘크리트 교각의 손상에 관한 연구)

  • 윤우현
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.117-125
    • /
    • 1995
  • In this study, the damage to a concrete br~dge pier due to flre caused by the fall of an oil truck were investigated by the use of FEM and by tensile tests for reinfortements. And thtse results were analyzed and compared with the measured values. In the FEM calculations, the selected variable was the fire temperature $T_a=500-800^{\circ}C$. The fixed values were the heat transition coefficient ${\alpha}=2000W/m^2{\cdot}K$. the initial temperature of concrete $T_0=5{\circ}C$ and the fire duration t=30 minutes. As the results obtained from numerical calculations, the property darrlage zone ap,)eared to be 1.5-4.1cm and the structure damage zone appeared to be 8.7- 10.1cm from the concrete surface. And this results give values very similar to those measured, nanlelv 2-4cm and 8~10cm respectively. The results frorn tensile tests give no serious loss of the tensile strength.