• Title/Summary/Keyword: Oil extraction

Search Result 560, Processing Time 0.028 seconds

Solid Phase Extraction of Phospholipids from Brazil Nut (Bertholletia excelsa) and Their Characterization by Mass Spectrometry Analysis

  • Lima, Bruna R. De;Silva, Felipe M.A. Da;Koolen, Hector H.F.;Almeida, Richardson A. De;Souza, Afonso D.L. De
    • Mass Spectrometry Letters
    • /
    • v.5 no.4
    • /
    • pp.115-119
    • /
    • 2014
  • The Brazil nut (Bertholletia excelsa - Lecythidaceae) is considered a product with high economic value, being a food widely appreciated for its nutritional qualities. Although previous studies have reported the biochemical composition of Brazil nut oil, the knowledge regarding the phospholipid composition exhibits a disagreement: the composition of fatty acids present in the structures of phospholipids is reported as being different from the composition of the free fatty acids present in the oil. In this work, solid phase extraction (SPE) was employed to provide a fast extraction of the phospholipids from Brazil nuts, in order to compare the phospholipid profile of the in nature nuts and their fatty acids precursor present in the oil. The major phospholipids were characterized by mass spectrometry approach. Their fragmentation pattern through direct infusion electrospray ionization ion-trap tandem mass spectrometry ($ESI-IT-MS^2$) proved to be useful to unequivocal characterization of these substances. High resolution (HR) experiments through ESI using a quadruple time of flight mass spectrometry (QTOF) system were performed to reinforce the identifications.

Fatty Acid Composition and Oxidative Properties of Anchovy Oil Extracted by Supercritical Carbon Dioxide (초임계 이산화탄소를 이용하여 추출된 멸치 오일의 지방산 조성 및 산화 특성)

  • Lee, Seung-Mi;Yun, Jun-Ho;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.266-272
    • /
    • 2011
  • Anchovy oil was extracted using supercritical carbon dioxide ($SCO_2$) and organic solvents. Extraction was carried out at temperature range from 40 to $60^{\circ}C$, and pressure range from 15 to 25 MPa. The flow rate of $CO_2$ (22 $gmin^{-1}$) was constant entire the extraction period of 1.5 h. The fatty acid composition of anchovy oil was analyzed by gas chromatography (GC). The main fatty acids of anchovy oil were myristic acid, palmitic acid, stearic acid, palmitoleic acid, EPA (eicosapentaenoic acid), and DHA (docosahexaenoic acid). In addition, the oil obtained by $SCO_2$ extraction contained a higher percentage of polyunsaturated fatty acids especially EPA and DHA comparing to the organic solvent extracted oil. The oxidative stability of oils extracted from Anchovy by $SCO_2$ extraction was compared to those extracted by organic solvents. Results showed that the storage periods of oils obtained by $SCO_2$ extraction were longer than those of organic solvents extraction.

Comparison of Volatile Compounds in Plant Parts of Angelica gigas Nakai by Extracting Methods (추출법에 따른 참당귀의 부위별 정유성분 비교)

  • Lim, Sang-Hyun;Park, Yu-Hwa;Ham, Hun-Ju;Kim, Hee-Yeon;Jeong, Heat-Nim;Kim, Kyung-Hee;Ahn, Young-Sup
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.427-433
    • /
    • 2009
  • Volatile flavor compounds from the shoot and root of Angelica gigas Nakai were extracted by HE (Hydrodistillation extraction), SDE (Simultaneous steam distillation & extraction), and SFE (Supercritical fluid extraction system), and analyzed by GC-MS. The amount and the number of chemical components in essential oils from shoot and root by SFE was the higher than those by other extraction methods. Respectively, thirty one constituents were identified from the essential oil of the shoot and root by HE, twenty seven and twenty three constituents were identified from the essential oil of shoot and root by SDE, thirty one and forty five constituents were identified from the essential oil of shoot and root by SFE. The result showed large differences in extraction methods and in plant parts of Angelica gigas Nakai. Also, the bioactive compounds in root part was identified as nodakenin and decursinol (11.95% and 8.42%, respectively) by SFE. These results suggested that SFE was the best extraction method for the increasing of extraction yield, the determination of volatile components and the increasing of bioactive compounds in the shoot and root of Angelica gigas Nakai.

Analysis of Microencapsulation Yield of Sardine Oil Spray Drying (분무건조방법으로 미세캡슐화된 정어리기름의 수율 측정)

  • 신명곤;서자영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.274-276
    • /
    • 1999
  • Sardine oil was microencapsulated by spray drying method in wall systems containing corn syrup in combination with sodium casein or wheat protein. Analysis of microencapsulation yield of sardine oil was carried out by a modified soxhlet method which could reduce the extraction time of surface oil. Microencapsulation yield of sardine oil was ranged from 65.3 to 93.5 % depending on the sodium casein content.

  • PDF

Characteristic Impact Odorants of Changpo (Acorus calamus var. angustatus Bess) Root Essential Oil

  • Choi, Hyang-Sook
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.450-455
    • /
    • 2005
  • This study was conducted to determine firstly the composition of the essential oil from fresh changpo (Acorus calamus var. angustatus Bess) roots quantitatively and qualitatively by use of two internal standards, and secondly volatile compounds which are primarily responsible for the aroma of changpo roots. Simultaneous steam distillation and extraction method was used for essential oil extraction, and aroma extract dilution analysis (AEDA) and sniffing test by gas chromatography/olfactometry (GC/O) were used to detect the characteristic impact odorants. According to the instrumental analysis of changpo root essential oil, cis, trans-famesol (47.56 mg/kg of fresh wt), octanoic acid (23.73 mg/kg of fresh wt), trans-2-dodecenal (20.28 mg/kg of fresh wt) and trans, trans-farnesol (13.81 mg/kg of fresh wt) were the most abundant compounds. Geranyl acetate, trans-nerolidol and trans, trans-farnesyl acetate were evaluated as the characteristic impact odorants of changpo roots from results of AEDA and sniffing test. Especially, geranyl acetate was considered as the most similar odor component to changpo roots by organoleptic evaluation with GC/O.

Extraction and Determination of Phytosterols from Corn Oil Foots

  • Kim, Sang-Ho;Park, Sang-Hoo;Ahn, Byung-Goo;Yi, Jeong-Sang;Park, Moo-Sin;Lee, Byeong-Ryong;Kim, Kweon
    • Archives of Pharmacal Research
    • /
    • v.13 no.3
    • /
    • pp.282-284
    • /
    • 1990
  • By saponification and extraction of corn oil foots abandoned as waste during oil refining, a mixture of phytosterols was obtained, and its major components were determined as .betha.-sitosterol, campesterol and stigmasterol by gas chromatographic analysis. The mixture is very cheap and regarded as an excellent substrate for direct fermentation of C-17 keto steroid intermediate for various steroid pharmaceuticals.

  • PDF

Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods (초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성)

  • Park, Jin-Seok;Cho, Yeon-Jin;Jeong, Yu-Rin;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2019
  • In this study, the extraction of Conger myriaster oil by using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated. The extraction conditions conducted for SC-CO2 varied for pressure (25, 30 MPa) and temperature (45, 55 ℃), while the SC-CO2 flow rate was kept constant during the experiment (27 g min-1) and hexane was used as a conventional organic solvent. The extraction yield indicated that the best extraction condition would be SC-CO2 at 55 ℃ and 30 MPa, resulting in the highest yield of 37.73 ± 0.14%. The oils were characterized for their fatty acid (FAs) composition using gas chromatography, while it was revealed that the major FAs were mystric acid, palmitoleic acid, oleic acid, electroosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free fatty acid. The best oxidative stability was obtained from SC-CO2 extracted oil at 30 MPa and 55 ℃. There was a significant difference in the color properties of the SC-CO2 and hexane extracted oils, with the SC-CO2 extracted oil showing better chromaticity than the oil extracted using hexane. Extracting oils from C. myriaster with SC-CO2 could bring better economic benefits than using organic solvents. When supercritical carbon dioxide was used, there was no post-treatment process; thus, it was confirmed that this is a more environmentally friendly oil extraction method.

Analysis of Fatty Acid Composition and Methyl-ester Properties of Camellia and Tea Oil (동백나무와 차나무 기름의 지방산 조성 및 메틸에스테르 특성 분석)

  • Kim, Kwang-Soo;Lee, Yong-Hwa;Jang, Young-Seok;Choi, In-Hu
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.36-42
    • /
    • 2013
  • To secure raw materials of biodiesel production, the possibility of camellia (C. japonica L.) and tea (C. sinensis L.) seed oil was studied to produce biodiesel. In this research, crude oil contents and fatty acid compositions of seeds were analyzed by Solxlet and Gas chromatography (GC). The oil contents in the seeds of camellia were 69.8%~73.8%, and tea were 26.3%~29.4%. Among the fatty acids of camellia and tea oil, oleic acid was dominant. The unsaturated fatty acids accounted for 88.4% and 80.2% of the whole fatty acids of camellia and tea seed oil. Total seed oil content and fatty acid composition of tea seed were influenced by collecting date. Across maturation period, oil content of tea seed averaged 18.3% on $6^{th}$ September increasing to 27.9% by $11^{th}$ October. For largest seed yield and oil content, the optimum time to harvest tea is in middle october, and camellia is late september and thereafter. The extraction efficiency of oil from seeds by extraction methods was determined. Biodiesel were synthesized in 92.1~92.8% yields from camellia and tea oils by transesterification. The biodiesel was characterized by its physical and fuel properties including oxidation stability, iodine value and cold filter plugging point (CFPP). Oxidation stability of camellia was 8.6~8.8 hours and tea was 2.9~3.6 at $110^{\circ}C$. Camellia oil had considerably better oxidation stability and CFPP than tea oil.

Preparation and Evaluation of Bupivacaine-loaded Microspheres by Solvent Extraction Method

  • Kim, Min-Soo;Hwang, Sung-Joo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.299.2-300
    • /
    • 2003
  • Various bupivacaine-Ioaded microspheres were prepared with poly (d,l-Iactide) (PLA) by solvent extraction method. The internal solution of polymer(PLA R104) and drug in glacial acetic acid was introduced into the external phase of polyvinylpyrrolidone (PVP K-30) in polyethyleneglycol (PEG), and emulsified to be an oil-in-oil (o/o) emulsion. The o/o emulsion was poured to the buffer solution. (omitted)

  • PDF

Patent Analysis of Oil Sands Technologies (오일샌드 기술(技術)의 특허정보(特許) 분석(分析))

  • Lee, Ki-Bong;Jeon, Sang-Goo;Nho, Nam-Sun;Kim, Kwang-Ho;Shin, Dae-Hyun;Lee, Heoung-Yeoun
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.3-12
    • /
    • 2009
  • Oil sands are sands containing bitumen similar to crude petroleum. Oil sands had not received enough interest because of the high production cost. However, in the current record-high oil price situation, oil sands are considered as new sources for unconventional oil. In this study, patents analysis was performed for the technologies of production of synthetic crude oil from oil sands. The patents covered were open patents applied in Korea, US, Canada, Japan, Europe, and China. The patents were divided into five detailed technologies; mining and in-situ, extraction, upgrading, fuelling, and other technologies. For oil sands technologies, there have been steady patent applications, since the first patent was applied in 1969. The number of patents applied appeared to be affected by the variation of world oil price. The portion of patents applied in US and Canada was about 90% of the overall patents and it means 05 and Canada have led oil sands technologies. Mining and in-situ technologies, and extraction have been developed actively and occupied more than 77% of the overall patents. However, the number of patents applied for mining and in-situ technologies, and extraction has been constant or started to decrease since 2000. The number of patents applied for upgrading technologies increases recently and it shows the development of upgrading technologies is active now.