• Title/Summary/Keyword: Oil extraction

Search Result 561, Processing Time 0.035 seconds

Antifungal Activity against Trichoderma spp. of Water Soluble Essential Oil extracted from Pinus densiflora and Chamaecyparis obtusa (소나무 및 편백나무 수용성 정유를 이용한 Trichoderma spp.의 생장억제 활성)

  • Yeo, Hee Dong;Jung, Ji-Young;Nam, Jung Bin;Kim, Ji Woon;Kim, Hee Kyu;Choi, Myung Suk;Alm, Glen;Rinker, Danny Lee;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.585-599
    • /
    • 2009
  • This study was carried out to investigate the antifungal activity of the water soluble essential oil against Trichoderma spp. Water soluble essential oils from Pinus densiflora and Chamaecyparis obtusa were obtained from GAP (Gas assisted process) extraction apparatus. When the water soluble essential oil was treated, the growth of the conidial germination was maximum under the cultivation condition at $25^{\circ}C$ and in the culture medium adjusted to pH 5.0. The yield of water soluble essential oil was 3.9% and 3.7% in P. densiflora and C. obtusa, respectively. 24 and 15 kinds of compounds were identified in water soluble essential oils of P. densiflora and C. obtusa, respectively. The major components in the essential oil of P. densiflora were $\alpha$-Terpineol acetate and Terpinen-4-ol and those of C. obtusa were Terpinen-4-ol and $\alpha$-Terpineol. Antifungal activity was the best in the 5000 ppm of P. densiflora against Trichoderma harzianum and in 5000 ppm of C. obtusa against Trichoderma atroviride.

Herbicidal Activity of Essential Oil from Palmarosa (Cymbopogon martini) (팔마로사 정유의 살초활성)

  • Hong, Su-Young;Choi, Jung-Sup;Kim, Song-Mun
    • Korean Journal of Weed Science
    • /
    • v.31 no.1
    • /
    • pp.96-102
    • /
    • 2011
  • The objective of this study was to find herbicidal compounds in the essential oil of palmarosa (Cymbopogon martini). Of essential oils from basil (Ocimum basilicum), blackpepper (Piper nigrum), clary sage (Salvia sclarea), ginger (Zingiber pfficinale), hyssop (Hyssopus officinalis), nutmag (Myristica fragrance), palmarosa (Cymbopogon martini), fennel (Foeniculum vulgare), sage (Salvia leucantha), and spearmint (Mentha spicta), the herbicidal activity of palmarosa essential oil, which was determined by a seed bioassay using rapeseed (Brassica napus L.), was highest ($GR_{50}$ value, $201{\mu}g\;mL^{-1}$). In palmarosa essential oil, 11 volatile organic chemicals were identified by gas chromatography-mass spectometry with solid-phase micro-extraction apparatus and the major constituents were geraniol (40.23%), geraniol acetate (15.57%), cis-ocimene (10.79%), and beta-caryophyllene (8.72%). The $GR_{50}$ values of geraniol, citral, nerol, and geranyl acetate were 151, 224, 452, and $1,214{\mu}g\;mL^{-1}$, respectively. In greenhouse and field experiments, foliar application of palmarosa essential oil at the level of $80kg\;ha^{-1}$ controlled weeds effectively. Overall results of this study showed that the herbicidal activity of palmarosa essential oil could be due to geraniol and citral which had lower $GR_{50}$ values.

Optimization of Onion Oil Microencapsulation by Response Surface Methodology (반응표면분석법에 의한 양파유 미세캡슐화 공정의 최적화)

  • Hong, Eun-Mi;Yu, Mun-Gun;Noh, Bong-Soo;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.437-443
    • /
    • 2002
  • Using agar and gelatin as wall materials, onion oil was microencapsulated using the extrusion spraying technology. A sensitive methodology was developed for quantitative determination of the microencapsulation yield through ethyl acetate extraction and gas chromatographic analyses. Optimal conditions for the microencapsulation process consisting of the ratio of [core material, Cm] to [wall material, Wm] ($X_1$), temperature of dispersion fluid ($X_2$), detergent concentration in dispersion fluid ($X_3$), and concentration of emulsifier $(X_4)$ were determined using response surface methodology. The regression model equation for the yield of microencapsulation (Y, %) of onion oil could be predicted as $Y\;=\;97.028571-0.775000\;(X_1)-0.746726\;(X_1){\cdot}(X_1)\;-\;1.100000\;(X_3){\cdot}(X_2)$. The optimal conditions for the microencapsulation of the onion oil were determined as the ratio of [core material] to [wall material] of 4.5 : 5.5 (w/w), the temperature of dispersion fluid of $17.1^{\circ}C$ detergent concentration in dispersion fluid of 0.03%, and the concentration of emulsifier of 0.42%. Results revealed the most stable microcapsule of onion oil could be formed with the highest yield of microencapsulation (more than 95%) under optimal conditions.

Assessment of the Risks of Fire and Explosion through the Spontaneous Ignition Temperature and Activation Energy of Sesame Seed Oil Cakes (참깻묵의 자연발화온도와 활성화 에너지를 통한 화재 및 폭발의 위험성 평가)

  • Byun, Sung-Ho;Choi, Yu-Jung;Yoo, Doo-Yeol;Kim, Kyoung-Su;Oh, Jae-Geun;Moon, Byung-Seon;Choi, Jae-Wook
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.225-231
    • /
    • 2021
  • Sesame seed oil cakes are classified as the animal or plant origin among the flammable liquids, and the fire occurs due to the spontaneous ignition through the accumulation of heat during the storage of residues after the extraction of sesame oil. In order to elucidate the cause of the spontaneous ignition of sesame seed oil cakes, the thickness (3 cm, 5 cm, 7 cm and 14 cm) of the sample container was varied, and the spontaneous ignition temperature was measured depending on the storage volume. Thus, the spontaneous ignition temperature was measured to be 180 ℃ at the thickness of 3 cm, 160 ℃ at 5 cm, 145 ℃ at 7 cm and 130 ℃ at 14 cm. As the thickness of the sample container increased, the critical ignition temperature decreased, and the induction time to spontaneous ignition and the time to reach the maximum temperature became longer. Furthermore, the apparent activation energy by the critical ignition temperature, which is the average temperature of ignition and non-ignition, was 97.10 [kJ/mol]. With these data, ignition characteristics of sesame seed oil cakes were determined.

Physicochemical properties of supercritical carbon dioxide defatted mealworm (Tenebrio molitor) powder and protein isolate (초임계이산화탄소 탈지 밀웜(Tenebrio molitor) 분말 및 분리단백의 이화학적 품질 특성)

  • Kim, Yangji;Kim, Seok Joong
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.516-523
    • /
    • 2020
  • Supercritical carbon dioxide (SCO2) extraction was applied for the defatting of mealworm to prepare defatted powder (DP) and protein isolate (PI) and compare the process to press and hexane extraction, with respect to DP and PI physicochemical properties. SCO2 DP was obtained by extracting 34.40% oil at 41.37 MPa, 40℃ for 180 min, and the product contained 71.66% crude protein, which is similar to that of hexane DP and higher than that of press DP. In using alkali protein extraction to prepare PI from DP, SCO2 was as effective as hexane and better than press. SCO2 produced brighter DP and PI than press, but not as much as hexane. Protein solubility was similar in all DP, with minimum values at pH 5. The highest water adsorption capacity was noticeable for SCO2 PI, and SCO2 DP showed an oil adsorption capacity comparable to that of hexane DP. SCO2 DP and PI had better foaming capacity than press DP and PI and showed superior emulsion activity compared to others.

Acute Toxicity of Emulsifiable Concentrate of Coriander Essential Oils against Cyprinus carpio (고수 정유를 원제로 하는 유제 제형의 잉어에 대한 급성독성)

  • Nam, Tae-Hoon;Jeon, Hwang-Ju;Kim, Kyeongnam;Choi, Yeonseo;Lee, Sung-Eun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.208-211
    • /
    • 2016
  • Essential oils (EOs) extracted from plants possess various biological activities and have been considered as natural insecticides due to their potent insecticidal activities. In regard to develop natural insecticides, EOs are formulated as an emulsifiable concentrate and their acute toxicity against to fishes were determined in a static condition using Cyprinus carpio. Coriander EO was used as an active ingredient mixed with ethanol for solvent and various surface active agents. The tested EOs were obtained from a commercial market, and three different extractions were also undertaken to produce EO using steam distillation, solvent extraction, and supercritical fluid extraction. Among the emulsifiable concentrate including a commercial coriander EO, surface active agents such as Tween 80, sodium dodecyl benzene sulfonate (SDBS), and mixture of SDBS and Nonidet showed acute toxicity to the fish. With the three different EO extraction, coriander EO obtained from supercritical fluids with Triton X-100 exhibited acute toxicity to C. carpio. Taken together, Tetgitol and Nondet are considered as surface active agents for the emulsifiable formulation of coriander EO.

Preparation and Characterization of Zaltoprofen-Loaded Polyoxalate Microspheres for Control Release (방출제어를 위한 잘토프로펜이 함유된 폴리옥살레이트 미립구의 제조와 특성)

  • Kim, Kyoung Hee;Lee, Cheon Jung;Jo, Sun A;Lee, Jung Hwan;Jang, Ji Eun;Lee, Dongwon;Kwon, Soon Yong;Chung, Jin Wha;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.702-710
    • /
    • 2013
  • Zaltoprofen loaded polyoxalate (POX) microspheres were prepared by an emulsion solvent-evaporation/extraction method like oil-in-water (O/W) for sustained release of zaltoprofen. The influence of several preparation parameters such as fabrication temperature, stirring speed, intensity of the sonication, initial drug ratio, molecular weight ($M_w$) of POX, concentration of POX and concentration of emulsifier has been investigated on the zaltoprofen release profiles. Physicochemical properties and morphology of zaltoprofen loaded POX microspheres were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared (FTIR). Through the analyzed results, it was demonstrated that the characteristics of the microspheres greatly affected by the prepared condition. The releases behavior of zaltoprofen was investigated for 10 days in vitro. It was confirmed that the release behavior of zaltoprofen can be controlled by the manufacturing factor of solvent-evaporation/extraction method.

A Field Study on Remediation of Gasoline Contaminated Site by Soil Vapor Extraction (토양증기추출법에 의한 휘발유 오염토양의 현장복원 연구)

  • 김재덕;김영래;황경엽;이성철
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.13-23
    • /
    • 2000
  • The effects of operating condition of soil vapor extraction system and the characteristics of site on the remediation of oil contaminated soil were investigated. Thorough investigation showed that the site was contaminated with gasoline leaked from underground storage tank and the maximum concentration of BTEX and TPH were 1,081 ppm and 5,548 ppm respectively. The leaked gasoline were diffused to 6m deep and the area and volume of the polluted soil were assumed to 170$m^2$ and 1,000$\textrm{m}^3$respectively. The site were consisted of three different vertitical layers, the top reclaimed sandy soil between the earth surface and 3~4m deep, middle silty sand between 3~4m and 6m deep, and the bottom bedrock below the 6m deep. The air pemeability of soil was measured to 1.058-1.077$\times$10$^{-6}$ $\textrm{mm}^2$ by vacuum pump tests. The groundwater which level was 3~4m deep was observed in some areas of this site. The soil vapor extraction system which had 7.5 HP vacuum pump and 8 extraction wells was constructed in this site and operated at 8 hrs/day for 100 days. The BTEX was removed with above 90% efficiency where no groundwater and silty sand were observed. On the contrary, the efficiency of BTEX and TPH were dramatically decreased where groundwater and silty sand were observed. The flow rate of soil air induced by soil vapor extraction system was reduced in deeper soil.

  • PDF

Extraction of Surface-Active Substances from Defatted Rice Bran by Supercritical Carbon Dioxide (초임계 CO2유체 추출법을 이용한 탈지미강 중 표면활성물질 추출의 최적화)

  • Lee, Hyong-Ju;Lee, Eui-Suk;Hong, Soon-Taek
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • By using supercritical carbon dioxide fluid, an attempt was made to extract surface-active substances from defatted rice bran. Extraction was carried out according to D-optimal design and results were analyzed by response surface methodology to establish optimum condition. It was found that pressure, temperature and co-solvent (ethanol) influenced in a different extent on the extraction efficiency (i.e., yield and interfacial tension) of surface-active substances. Among them, co-solvent was found to be a major influencing factor, where maximum yield (2.62%) was observed at the highest content (250 g). In addition, it also affected most on the interfacial tension at the oil-water interface but in this case the lowest interfacial tension value (9.51 mN/m) was found when added lowest (50 g). In conclusion, it was estimated that the optimum extraction condition was to be pressure 350bar, temperature $62^{\circ}C$ and co-solvent content 50 g in this study, where extraction yield was 0.69% and interfacial tension to be 10.1 mN/m.

Analysis of Hydrosol Components through Distillation Extraction of the Sunbigi Tree(Vitex rotundifolia L.f.) Fruit of the Wild Birch Tree Native to the Coast (해안가에 자생하는 순비기나무 열매의 증류추출을 통한 하이드로졸 성분분석)

  • Jung, Y.O.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.24 no.1
    • /
    • pp.5-13
    • /
    • 2022
  • Sunbigi tree(Vitex rotundifolia L.f.), which grows wild in the southern part of Korea and along the coast of the West Sea, has a lot of useful value in terms of resource utilization. Since ancient times, it has been used as folk medicine or herbal medicine in the private sector. Although the leaves and stems have a strong scent, the fruit also has a strong scent, so there are some studies on extracting essential oil from the fruit of Sunbigi tree and analyzing the ingredients, but there are few studies on the fragrance component by extracting hydrosol. The reason is that the fruits are hard and it is difficult to identify the active ingredients contained in the general extraction method. Therefore, in this study, the results of analyzing the components contained in the fragrance of hydrosol obtained by extracting hard fruits at high temperature by different extraction methods are as follows. 1. The extraction condition with the highest flavonoid content was 30.57 mg/g with ethanol, followed by hot water extract at 18.26 mg/g and water extract at 9.69 mg/g with the lowest. 2. As a result of distillation extraction from the fruit of Sunbigi tree, the fragrance of hydrosol is 3-Methyl-2-butenoic acid, cyclobutyl ester, Eucalyptol, L-alpha-Terpineol, 1H-Cycloprop[e]azulen-7-ol, decahydro-1 ,1,7-trimethyl-4-methylene-, [1ar-(1a.alpha.,4a.alpha.,7.beta.,7a.beta.,7b.alpha.)] were found to be many.