• Title/Summary/Keyword: Oil combustion

Search Result 511, Processing Time 0.025 seconds

Study on Combustion Characteristics of Diesel Fuel and Low Quality Oil Droplet with Additive Oxygenate and Paraffin (함산소계 및 파라핀계 혼합 경유 및 저질유 액적의 연소특성에 관한 연구)

  • Kim Bong-Seock;Ogawa Hideyuki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.552-561
    • /
    • 2006
  • The single droplet combustion characteristics of diesel fuel and low quality oil with additive oxygenate and paraffin under high ambient temperature and atmospheric pressure were investigated in the study. The results of the study may are concluded as follows: In the combustion of diesel fuel and low quality oil droplet with additive of oxygenate and paraffin. the dimensionless droplet size of $(D/Do)^2$ was linearly decreased with time. A fuel droplet with low boiling temperature additives and in high boiling temperature base fuel evaporates and burns faster than usual base fuel. Especially. these trends were remarkably obtained by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than n-paraffin agents. This rapid burning may result from so-called 'micro-explosion' and its burning intensity varies with the types of additives. The results above may suggest that rapid evaporation of oxygenate additive in the middle stage of combustion can contribute much to combustion improvement of blended fuels.

A Study on the Reduction of Particulate Emission Using Oil Soluble Organometallic Compounds as Combustion Improver for Heavy Fuel Oil (중질유 연소시 유용성 유기금속화합물 연소촉진제의 Dust 저감특성)

  • Kim, Dong-Chan;Nho, Nam-Sun;Woo, Je-Kyung;Kim, Jin-Hoon;Lee, Young-Sea
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 2008
  • This study is aimed at substantially reducing the particulate matter (dust) emission during the combustion of heavy fuel in boilers by addition of combustion improver. The combustion improver used were the oil-soluble organometallic compounds that were found to be more effective than the dispersing agents that are generally used for reducing the particulate emission. The dust reduction effect was found to depend on the active materials (metals) as well as on the organic ligand part of organometallic compounds. Acetylacetonoate and naphthenate of Fe and Ca were found to be most effective for dust reduction. Addition of Fe and Ca organometallic compounds as combustion improver in concentration of 30 ppm (metal basis) to heavy fuel oil, caused dust reduction by 50 wt% to 80 wt%.

An Experimental Study on Vaporization and Combustion Behavior for Single Droplets of Water-in-Oil Emulsified Fuels (유화연료 단일액적의 증발 및 연소거동에 관한 실험적 연구)

  • Park, M.C.;Kim, B.S.;Oh, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.81-89
    • /
    • 2000
  • An experimental study has been carried on single fuel droplets of water-in-light oil emulsions in an electric furnace to elucidate the dominant factor for the occurrence of micro-explosions. The tests were carried out by changing the following four parameters; the surfactant, the ratio of water to light oil, ambient temperature in electric furnace, and four kinds of fuels having different viscosity(light-oil, kerosene, iso-octane, bunker fuel). The result shows that micro-explosion phenomena is dominated without surfactant and below 30% of water content. Explosion-time is affected by ambient temperature and viscosity of used fuel.

  • PDF

Experimental study on the combustion characteristics of 7 MW-3 air stages low NOx combustion system for a heavy-oil firing boiler (중유보일러용 3단 저NOx 버너의 연소특성 실험)

  • Kim, Hyouck-Ju;Park, Byoung-Sik;Lee, Sung-Su;Kim, Jong-Jin;Choi, Gyu-Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.244-249
    • /
    • 2004
  • Experiments were performed to investigate the characteristics of combustion of 7MW-3 air stages combustion system for a heavy oil firing boiler. Several fuel nozzles were developed for the purpose of lowering pollutions in another institute and ${\Phi}$-jet nozzle among them was equipped to the combustion system. A variety of combustion phenomena were observed as air stage ratio, air fuel ratio and load are changed for each nozzle. Main combustion characteristics are shape of flame, NOx and CO generations, smoke scale number. Through lots of adjustments, the combustion system reaches such goals as the low NOx of 160 ppm, CO of 300 ppm corrected at $O_2$ of 4% and dust of 150 mg/Sm3.

  • PDF

A Study on Combustion Patterns of Flammable Liquids by Contained Oil Test (담유 실험에 의한 인화성 액체의 연소 패턴 해석에 관한 연구)

  • Joe, Hi-Su;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.14-20
    • /
    • 2014
  • The purpose of this study is to analyze combustion patterns by filling a specific container with a flammable liquid and performing combustion tests in a divided space. The container used for the test is made of plastic, 20 mm in depth and 150 mm in width. After the liquid was ignited, its combustion process was photographed using a digital camera and video camera. It was found that in the case of benzene, the flame reached its peak at the fastest speed about 60 s while in the case of alcohol, the flame reached its peak at the lowest speed about 360 s, which is approximately six times slower than the benzene. In most cases, when the flame reached its peak, smoke generated was dark as the plastic container and flammable liquid were combusted simultaneously. After completion of the combustion, it was possible to sample oil vapor from all flammable liquids excluding soybean oil as a result of the examination of oil vapor using a crime investigation tube. That is, it can be seen that there is significant difference in flame propagation speed, pattern, etc., depending on the combustible substances.

Study on the Combustion Characteristics of Tulip Tree (Liriodendron tulipifera) for Use as Interior Building Materials

  • Min Ji KIM;Sang-Joon LEE;Sejong KIM;Myung Sun YANG;Dong Won SON;Chul-Ki KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.410-418
    • /
    • 2023
  • In this study, the combustion characteristics of the Tulip tree, which is the representative broad-leaved afforestation tree in Korea, were analyzed. The flame retardant performance of the Tulip tree was analyzed by analyzing combustion characteristics on a total of three test samples; flame retardant treated, both flame retardant and oil stain-treated, and untreated. Then the flame retardance grade was classified for each of them. According to the result, test samples showed the strongest flame retardance were in order of flame retardant treated (C), both flame retardant and oil stain-treated (B), and untreated (A). As a result of analyzing the total heat emission and maximum heat emission rates, which is the evaluation standard for interior materials of Korean domestic buildings, test samples with flame retardant treat or flame retardant and oil stain treat were qualified for the flame-retardant standard. Both flame retardant and oil stain-treated samples showed higher total heat release (THR) and heat release rate compared to flame retardant-treated samples as the oil causes combustion with oxygen. On the other hand, they didn't qualify the THR in Quasi-non-combustible standards. To determine the correlation between the physical and combustion characteristics of wood, the combustion characteristics of other diffuse porous wood species, with which the Tulip tree is affiliated were analyzed, and noticed that the characteristic correlates with the density and quantity of wood. The results of this study are expected to be used as basic information on the combustion characteristics of the Tulip tree.

A study on exhaust emission characteristics according to operating conditions and butanol blended fuels in a small diesel engine for fishing vessel (소형 어선용 디젤기관의 운전조건과 부탄올 혼합유의 배기 배출물 특성에 관한 연구)

  • KIM, Sang-Am;WANG, Woo-Gyeong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.256-263
    • /
    • 2021
  • In this study, blending oils of diesel oil and butanol were used as fuel oil for diesel engine to measure combustion pressure, fuel consumption, air ratio and exhaust gas emission due to various operating conditions such as engine revolution and torque. Using these data, the results of analyzing the engine performance, combustion characteristics and exhaust emission characteristics such as NOx (nitrogen oxides), CO2 (carbon dioxide), CO (carbon monoxide) and soot were as follows. The fuel conversion efficiency at each load was highest when driven in the engine revolution determined by a fixed pitch propeller law. Except 30% butanol blending oil, fuel conversion efficiency of the other fuel oils increased as the load increased. Compared to diesel oil, using 10% and 20% butanol blending oil as fuel oil was advantageous in terms of thermal efficiency, but it did not have a significant impact on the reduction of exhaust gas emissions. On the other hand, future research is needed on the results of the 20% butanol blending oil showing lower or similar levels of smoke concentration and carbon monoxide emission rate other than those types of diesel oil.

A Study on the Utilization of Fish Oil in a Diesel Engine for Fishing Boats (어선용 디젤기계에 있어서 어유이용에 관한 연구)

  • 서정주
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.1
    • /
    • pp.45-52
    • /
    • 1992
  • In this paper, combustion characteristics and engine performance varying with blending rate of fish oil using five test fuels, e.g.pure diesel oil and four types of sardine-oil-blended diesel oils, their blending rates by weight being 20%, 40%, 60% and 80% respectively, and operating condition of engine, were investigated experimentally both in the constant volume combustion bomb and in the engine. The results are summarized as follows: 1) In the bomb, the influence of temperature on ignition delay of sardine-oil-blended diesel oils was larger than that of pure diesel oil, and it tended to increase as the blending rate of fish oil increase sardine-oil-blended diesel oils. As far as the influence of pressure on ignition delay concerns, there was no significant difference with all the test fuels. 2) In the engine, the ignition delay of fish-oil- blended diesel oils was longer than that of pure diesel oil, and it tended to increase as the blending rate increases. In the bomb, the ignition delay in high temperature showed no significant difference between with pure diesel oil and with fish-oil-blended diesel oils, and it was especially short with 60% fish-oil-blended diesel oil. In low temperature, however, the delay became longer as the blending rate increase. 3) The combustion duration was shorter with fish-oil-blended diesel oils than with pure diesel oil and it became a little shorter as the blending rate increases. 4) The rate of fuel consumption showed no significant difference between with fish-oil-blended diesel oils and with prue diesel oil, although calorific value of fish oil was lower than that of diesel oil. 5) Smoke density in exhaust gas was lower with fish-oil-blended diesel oils than with pure diesel oil and the higher the blending rate was, the lower the smoke density became.

  • PDF

Effects of Fuel Injection Timing on Combustion Characteristics of Biodiesel Blend Oil in Diesel Engine (디젤기관에서 바이오디젤 혼합유의 연소특성에 미치는 연료분사시기의 영향)

  • Lim, J.K.;Cho, S.G.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.10-15
    • /
    • 2012
  • Recently we have a growing interest in environmental pollution and alternative energy. Diesel engine is generally used to produce the power on the ground and the sea. However, the combustion characteristics are changed on account of the wear of fuel system and the altered ambient condition of the combustion chamber by the increment of the engine operation hour. Therefore combustion characteristics on fuel injection timing are experimentally investigated to find out the optimum fuel injection timing in the case of the aged diesel engine using biodiesel blend oil. Cylinder pressure, rate of pressure rise, rate of heat release and combustion gas temperature are risen by the advancing fuel injection timing, while the exhaust gas temperature and soot emission level are decreased by the advancing of fuel injection timing. The least specific fuel oil consumption is indicated at BTDC $26^{\circ}$ CA on the 75%load and at 1800rpm.

A Study on the Combustion of Fish Oil in a Diesel Engine (Exhaust Emission, Endurance Test) (디젤기관의 어유 연소에 관한 연구(배기에미션, 내구시험))

  • 서정주
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.77-82
    • /
    • 1999
  • This study was conducted on the properties of exhaust emissions of diesel oil and fish oil blended with diesel oils using a direct injection diesel engine at different loads, and on the conditions of carbon deposits of diesel oil and 40% blend oil in the combustion chamber after 20 hours operation at $\frac{1]{2}$ load. The properties of exhaust emissions by fish oil blended with diesel oils showed no significant difference with diesel oil. However, soot emissions decreased, increasing the ratio of fish oil. Carbon deposits by fish oil blended with diesel oils were high level compared with diesel oil, which might be overcome by preheating of fuel oil and operating conditions.

  • PDF