• Title/Summary/Keyword: Oil Tank

Search Result 260, Processing Time 0.03 seconds

A Study on Vibration Characteristics in Water Tank Structure (접수탱크구조의 진동특성에 관한 연구)

  • 배성용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • In ship structures, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages can be sometimes observed in these tanks which seem to be caused by resonance. Tank structures in ships are in contact with water and the vibration characteristics are strongly affected by the added mass of containing water. Therefore it is important to predict vibration characteristics of tank structures. In order to estimate the vibration characteristics, the fluid-structure interaction problem has to be solved precisely. In the present paper, we have developed a numerical tool of vibration analysis of 3-dimensional tank structures using finite elements for plates and boundary elements for water region. To verify the present analysis, we have made an experiment for vibration characteristics of a tank with elastic opposite panels. And the added mass effect of containing water and the effect of structural constraint between panels are investigated numerically and discussed.

Analysis of Cause of Fire and Explosion in Internal Floating Roof Tank: Focusing on Fire and Explosion Accidents at the OO Oil Pipeline Corporation (내부 부상형 저장탱크(IFRT) 화재·폭발사고 원인 분석: OO송유관공사 저유소 화재·폭발사건을 중심으로)

  • Koo, Chae-Chil;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.86-93
    • /
    • 2020
  • This study aims to maintain the safety of an outdoor storage tank through the fundamental case analysis of explosion and fire accidents in the storage tank. We consider an accident caused by the explosion of fire inside the tank, as a result of the gradual spreading of the residual fire generated by wind lamps flying off a workplace in the storage tank yard. To determine the cause of the accident, atmospheric diffusion conditions were derived through CCTV image analysis, and the wind direction was analyzed using computational fluid dynamics. Additionally, the amount of oil vapor inside the tank when the floating roof was at the lowest position, and the behavior of the vapor inside the tank when the floating roof was at the highest position were investigated. If the cause of the explosion in the storage tank is identified and the level of the storage tank is maintained below the internal floating roof, dangerous liquid fills the storage tank, and the vapor in the space may stagnate on the internal floating roof. We intend to improve the operation procedure such that the level of the storage tank is not under the Pontoon support, as well as provide measures to prevent flames from entering the storage tank by installing a flame arrester in the open vent of the tank.

Seismic response analysis of an unanchored vertical vaulted-type tank

  • Zhang, Rulin;Cheng, Xudong;Guan, Youhai;Tarasenko, Alexander A.
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.67-77
    • /
    • 2017
  • Oil storage tanks are vital life-line structures, suffered significant damages during past earthquakes. In this study, a numerical model for an unanchored vertical vaulted-type tank was established by ANSYS software, including the tank-liquid coupling, nonlinear uplift and slip effect between the tank bottom and foundation. Four actual earthquakes recorded at different soil sites were selected as input to study the dynamic characteristics of the tank by nonlinear time-history dynamic analysis, including the elephant-foot buckling, the liquid sloshing, the uplift and slip at the bottom. The results demonstrate that, obvious elephant-foot deformation and buckling failure occurred near the bottom of the tank wall under the seismic input of Class-I and Class-IV sites. The local buckling failure appeared at the location close to the elephant-foot because the axial compressive stress exceeded the allowable critical stress. Under the seismic input of Class-IV site, significant nonlinear uplift and slip occurred at the tank bottom. Large amplitude vertical sloshing with a long period occurred on the free surface of the liquid under the seismic wave record at Class-III site. The seismic properties of the storage tank were affected by site class and should be considered in the seismic design of large tanks. Effective measures should be taken to reduce the seismic response of storage tanks, and ensure the safety of tanks.

Shielding effects and buckling of steel tanks in tandem arrays under wind pressures

  • Portela, Genock;Godoy, Luis A.
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.325-342
    • /
    • 2005
  • This paper deals with the buckling behavior of thin-walled aboveground tanks under wind load. In order to do that, the wind pressures are obtained by means of wind-tunnel experiments, while the structural non linear response is computed by means of a finite element discretization of the tank. Wind-tunnel models were constructed and tested to evaluate group effects in tandem configurations, i.e. one or two tanks shielding an instrumented tank. Pressures on the roof and on the cylindrical part were measured by pressure taps. The geometry of the target tank is similar in relative dimensions to typical tanks found in oil storage facilities, and several group configurations were tested with blocking tanks of different sizes and different separation between the target tank and those blocking it. The experimental results show changes in the pressure distributions around the circumference of the tank for half diameter spacing, with respect to an isolated tank with similar dimensions. Moreover, when the front tank of the tandem array has a height smaller than the target tank, increments in the windward pressures were measured. From the computational analysis, it seems that the additional stiffness provided by the roof prevents reductions in the buckling load for cases even when increments in pressures develop in the top region of the cylinder.

Synthesis and Characterization of Mono- and Diacylglycerol Enriched Functional Oil by Enzymatic Glycerolysis of Corn Oil (옥수수유로부터의 효소적 glycerolysis에 의한 monoacylglycerol과 diacylglycerol 함유 기능성 유지 합성 및 특성연구)

  • Park, Rae-Kyun;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.211-216
    • /
    • 2004
  • Mono-and diacylglycerol-enriched oil was produced from corn oil through enzymatic glycerolysis using 1,3-specific immobilized lipase in solvent-free system and stirred-tank batch reactor. HPLC analysis revealed enriched oil was respectively composed of: 45.05, 16.27, 23.05, and 14.98% triacylglycerol, 1,3-diacylglycerol, 1,2-diacylglycerol, and monoacylglycerol; 13.21, 0.15, 2.02, 34.36, 49.12, and 1.14 mol% palmitic, palmitoleic, stearic, oleic, linoleic, and linolenic acids; and 0.014, 0.029, 0.010 and 0.053% ${\alpha},\;{\gamma},\;{\delta}-$, and total tocopherols. Physiochemical and melting properties of enriched oil were evaluated. Oxidative stability study revealed enriched oil showed higher peroxide and p-anisidine values than corn oil. Rosemary extracts (100 to 300 ppm) reduce oxidation.

Study of High-capacity Foam Discharging Systems for Full Surface Fire of Big Oil Tanks (대형 유류저장탱크 전면화재 대응을 위한 대용량포방사시스템 연구)

  • Im, Joo-Yeol;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.173-180
    • /
    • 2019
  • Oil tank fires need to be suppressed differently from other oil-related fires, due to the high-temperature flames and hot updraft above the tank, in the former case, that cause the destruction of large amounts of foam. We studied high-capacity foam discharge systems based on the standards of the American Petroleum Institute (API), National Fire Protection Association (NFPA), British Standard European Norm (BS EN), and the laws of Japan. The performance of a high-capacity foam discharge system was measured by conducting real fire experiments with model oil tanks. We concluded that lightweight and easily movable high-capacity foam discharge systems should be urgently introduced in domestic operations. Additionally, the obstacles faced by major tanks, such as long-distance installation of large-diameter fire hoses and narrowing of firefighting spaces, should be resolved depending on the conditions of the site.

Comparison of Oil Recovery Performance between Disk Materials of Oil Skimmer (유회수기용 디스크 소재별 성능 비교)

  • Jang Duck-Jong;Na Son-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.11 no.2 s.23
    • /
    • pp.103-108
    • /
    • 2005
  • For the development of a disk type oil skimmer for a tank lorry, a basic study on comparison of oil recovery performance between disk materials of oil skimmer was conducted. The experiment results are summarized as follows: In all the disks, the volume of recovery of bunker-A oil was greater than diesel oil. In light oil, there was nearly no differences in the volume of oil recovery by disk material, but in the case of bunker A oil, recovery efficiency showed big differences depending on the disk materials. For diesel oil, the differences in the volume of oil recovery per unit of operation time from the initial time zone were hardly shown. However, the volume of recovery of bunker-A oil linearly increased from the initial operation time in all the disks and the increase showed a slew moving trend as time. went on; therefore, the volume of oil recovery per unit of operation time showed differences depending on time. This result shows that oil viscosity has an effect on the disk recovery efficiency. When comparing the mass of pure oil recovery and the volume of water recovery in the total mass of recovery by bunker-A oil, there was no difference in the volume of oil recovery between the window-aluminum material disk and the disks consisting of other materials, but the volume of water recovery of the former was relatively very small This shows the most ideal result in view of oil recovery efficiency that considers the volume of water recovery. In conclusion, it was found that aluminum is the most advantageous as the material for tank lorry oil skimmer disk.

  • PDF

FAST RADAR DATA PROCESSING FOR OIL SPILL DETECTION

  • Gershenzon, Olga N.;Gershenzon, Vladimir E.;Sonyushkin, Antony V.;Osheyko, Sergey V.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.985-988
    • /
    • 2006
  • Oil spills cause huge material damage. Oil and oil products spills may occur at any stage of the offshore oil production and transportation cycle. Therefore taking into account the current trends of oil production, the task of creating a system for shelf and tank fleet monitoring becomes very crucial today. This document describes the technology being implemented to improve oil spill monitoring and surveillance, to ensure SAR data fast acquisition and processing and to develop geographic information systems in support of spill response decision making. The results of technology implementation are also presented below.

  • PDF

Remove and analysis of spilled oil and compensation for the damage caused by spilled oil (유출유의 방제, 분석 및 피해보상에 관하여)

  • Kim, Do-Hee
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.115-116
    • /
    • 2008
  • A big accident of oil spill occasionally occur in coast of Korea according to increase of sailing of oil tank ship in recently. This study was focused on transformation and behavior of spilled oil in ocean and effect of spilled oil on environment and introduce the methods of analysis of spilled oil, compensation for the damage caused by spilled oil.

  • PDF

Comparative on Recovery Efficiency of Spilled Oil by Disk Materials (디스크 소재별 유회수 성능 비교)

  • Jang Duck-Jong;Na Son-Cheol
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.165-170
    • /
    • 2005
  • A basic study for the development of a disk type oil skimmer for a tank lorry, compares via experiments to the oil recovery differences by material between the existing oil skimmer disk and several discs which oil adhesion are possible. The experiment results in this study are summarized as follows: In all the disks, the mass of recovery of bunker-A oil was greater than light oil. In light oil, there was nearly no differences in the mass of oil recovery by disk material, but in the case of bunker A oil, recovery efficiency showed big differences depending on the disk materials. For light oil, the differences in the mass of oil recovery per unit of operation time from the initial time zone were hardly shown. However, the mass of recovery of bunker-A oil linearly increased from the initial operation time in all the disks and the increase shaped a slow moving trend as time went on; therefore, the mass of oil recovery per unit of operation time showed differences depending on time. This result shows that oil viscosity has an effect on the disk recovery efficiency. When comparing the mass of pure oil recovery and the mass of water recovery in the total mass of recovery by bunker-A oil, there was no difference in the mass of oil recovery between the window-aluminum material disk and the disks consisting of other materials, but the mass of water recovery of the former was relatively very small. This shows the most ideal result in view of oil recovery efficiency that considers the mass of water recovery. In conclusion, it was found that aluminum is the most advantageous as the material for tank lorry oil skimmer disk.

  • PDF