• 제목/요약/키워드: Oil Flow Standard

검색결과 30건 처리시간 0.021초

경질유 유량표준장치의 신뢰도 검증을 위한 측정정확도 비교 (Intercomparison of Light Oil Flow Standard System for the Reliability of Measurement Accuracy)

  • 임기원
    • 대한기계학회논문집B
    • /
    • 제32권9호
    • /
    • pp.712-719
    • /
    • 2008
  • Light Oil Flow Standard System(LOFSS), as a national oil flow standard system, in Korea Research Institute of Standards and Science(KRISS) was developed for oil flowmeter calibration, and the expanded uncertainty of flow quantity determination was estimated within 0.04 %. In order to improve the reliability of the LOFSS measurement, a proficiency test was carried out in the flow range of 20 and $240\;m^3/h$ (Reynolds number $20,000{\sim}900,000$). A turbine flowmeter was used as a transfer package in round robin test. The water flow standard system of KRISS, the pipe prover of the national calibration and test organization and the master meter calibrator of the turbine flowmeter supplier, which used the different working fluid respectively, were compared with the turbine flowmeter measurement. The maximum difference of measurement was 0.15 % between the LOFSS and the pipe prover. The En numbers of the each system measurement were evaluated at the same Reynolds number. It was found that the En numbers were less than 1 in the comparison, which means the procedures of the uncertainty estimation of the each calibrators were reasonable and reliable.

장기 안정성을 고려한 경질유 유량표준장치 불확도 평가 (Long Term Stability of Uncertainty Analysis of Light Oil Elow Standard System)

  • 임기원;최종오
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1130-1138
    • /
    • 2005
  • A national standard system for the petroleum field has been developed to calibrate and test the oil flow meters in Korea. The operating system and the uncertainty of the system were evaluated by the peer reviewers of foreign national metrology institutes in 2002. Since the characteristics of the system might be changed by time, the uncertainty of the system is reevaluated with the consideration of the long term stability of the system. It is found that the system has a relative expanded uncertainty of 0.048 $\%$ in the range of $15\~120\;m^3/h$. According to the uncertainty budget, the uncertainties of the fluid density and the final mass measurement, which are temperature dependent, contribute about $94\%$ of the total uncertainty in the oil flow standard system

기름 유량표준장치의 개발 및 측정 불확도에 관한 연구 (A Study on the Development and the Uncertainty Analysis of Oil Flow Standard System)

  • 임기원;최종오
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1071-1080
    • /
    • 2003
  • A national standard system was developed in order to calibrate and test the oil flowmeters for the petroleum field. A stop valve and a gyroscopic weighing scale were employed for the primary standard of the flow quantity. It is operated by the standing start and finish mode and the static weighing method. The model equation for uncertainty evaluation was based on the calibration principle of standard system. The sources of the uncertainties were quantified and combined according to the GUM(Guide to the Expression of Uncertainty in Measurement). It was found that the standard system had the relative expanded uncertainty of 0.04 % in the range of 18 - 350 ㎥/h. According to the uncertainty budget, the uncertainties of the fluid density and the volume of pipeline, which were temperature dependent, contributed 92% of final uncertainty in the oil flow standard system.

Build-Up 기법을 이용한 경질유 표준장치의 측정범위 확장 (Flow Range Extension of Light Oil Flowmeter Standard System with Build-Up Technique)

  • 임기원;최종오
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1139-1146
    • /
    • 2006
  • Light Oil Flow Standard System(LOFSS) in Korea Research Institute of Standards and Science(KRISS) was designed for oil flowmeter calibration. In order to extend the flow range from 120 $m^3/h$ to 200 $m^3/h$, the build-up technique was applied with two positive displacement flowmeters as master flowmeter. The master flowmeters were calibrated against with LOFSS, which has 0.04 % uncertainty of flow quantity determination, then the test flowmeter is calibrated against two master flowmeters. For uncertainty analysis, the repeatability of master flowmeters, the variation of the fluid density and the pipe volume due to temperature change were scrutinized. The contribution of each uncertainty factors to the calibrator and the correlation of each factors were discussed. For investigating the feasibility of uncertainty analysis, a turbine flowmeter as a transfer package was tested with LOFSS and two reference flowmeter. The hypothesis test for both results was coincide with a 95 % significant level. This means that the uncertainty analysis procedure of the calibrator is reasonable and the extension of flow range with master meters was carry out successfully.

원유오염토양의 아임계수를 통한 정화 가능성 평가 (Assessment of Potential Utility of Subcritical Water for Remediation of Crude Oil Contaminated Soil)

  • 정연재;조영태;;박성재;정선국;박정훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권6호
    • /
    • pp.48-56
    • /
    • 2017
  • Although various methods have been investigated for treatment of crude oil contaminated soil, more researches are still required to preserve soil environment. This study investigated the potential utility of subcritical water in remediation of crude oil contaminated soil under various experimental conditions including temperature ($150-300^{\circ}C$), flow rate (1.0-2.0 mL/min) and extraction time (60-120 min). The removal rate of crude oil gradually increased with increasing temperature and time. After treatment at $200^{\circ}C$ and $300^{\circ}C$ for 60 min, the remaining concentration of crude oil met the Kuwait standard clean-up level (10,000 mg/kg) and the Korean standard level (2,000 mg/kg), respectively. The removal efficiency of crude oil increased from 77.8% to 88.4% with increasing extraction time from 60 to 120 min at $250^{\circ}C$. A decreasing rate of oil removal was observed as flow rate increased, possibly due to channeling flow occurred within the soil body at higher flow rate condition. Overall, the results revealed that subcritical water extraction process could be feasible for remediation of crude oil contaminated soil, and the relative effect of parameters on the oil removal was in the order of temperature > time > flow rate.

석유생산 시 유동안정성 확보를 위한 불투명 오일의 왁스생성온도 결정 연구 (Experiment Research for Wax Appearance Temperature Determination of Opaque Oil)

  • 강판상;황순혜;손비룡;임종세
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.1-8
    • /
    • 2015
  • 석유의 생산 과정에서 발생하는 왁스(wax)와 같은 고형물의 생성 및 집적은 유동안정성 확보(flow assurance) 문제를 발생시켜 안정적인 석유 생산을 방해할 수 있으며, 현장에서는 이를 해결하는데 많은 시간 소모와 경제적 손실이 발생할 수 있다. 왁스집적 문제는 왁스가 생성되기 시작하는 온도인 왁스생성온도 이하의 조건에서만 발생하므로 왁스집적 문제를 예측하고 제어하기 위해서는 오일의 왁스생성온도를 사전에 필수적으로 파악해야한다. 컨덴세이트와 같은 투명 오일의 왁스생성온도는 광학적 기술인 표준측정법이 적용되는 반면 대부분의 현장에서 생산되는 불투명 오일에는 적용이 어려운 한계점이 있다. 이 연구에서는 3가지의 투명 오일시료에 열유량 변화 분석, 점도 변화 분석, 밀도 변화 분석 기법을 적용하여 파악한 왁스생성온도와 표준기법으로 측정한 값과 비교하여 밀도 변화 분석 기법이 가장 신뢰도가 높은 것을 확인하였고 이 기법을 2종류의 불투명 오일시료에 적용하여 왁스생성온도를 결정하였다.

미세유체소자 내부에서의 Droplet 형성에 대한 Micro-PIV 측정 (Micro-PIV Measurement on the droplet formation in a microfluidic channel)

  • 윤상열;고춘식;김재민;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1534-1539
    • /
    • 2004
  • This experiment has been carried out to measure the process of droplet formation between water phase fluid(PVA 3%) and organic phase fluid(oil) and vector fields measured by a Dynamic Micro-PIV method in the inside of a droplet while generated. Droplet length controlled by changing flow rate conditions in microchannel. Water-in-oil(W/O) droplets successfully generated at a Y junction and cross microchannel. But oil-in-water(O/W) droplets could not be formed at a Y junction microchannel. That is, PVA 3% flow could not be detached from the PDMS surface and ran parallel with oil flow. When PVA 3% flow rate was constant, droplet length and time period decreased as oil flow rate increased, but droplet frequency increased. When PVA 3% and oil flow rate ratio was constant, droplet length and time period decreased as flow rate increased, but droplet frequency increased. All that case, Standard deviation of droplet formation have less than 5% at averaged droplet length and regular-sized droplets were reproducibly formed.

  • PDF

경사각을 갖는 적층판식 유수분리기의 유수분리 효율에 관한 연구 (A Study on the Oil/Water Separation Efficiency of Laminated Plate Type Oily water Separator with Inclined Angle)

  • 한원희;김준효;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.365-374
    • /
    • 2001
  • Its a tendency to strengthen related international was as the importance on marine oil pollution recently becomes the issue. According to the regulation of IMO, oil discharge from ships is allowed under 15PPM only and oil filtering equipment is essential. Oily water separator of laminated plate type which is one of gravity type separator can be use as assistant equipment for the oil filtering system to meet the present IMO standard, because it fits well to process large amount of rich oil with high specific gravity. The purpose of this paper is to investigate an efficiency of oil/water separation with the characteristics of laminated plate arrangement. The analyse of oil contents for oil-water mixture were carried out in order to find an efficiency of oil/water separation and an experimental study was simultaneously carried out to investigate internal flow characteristics of separator by visualization method and PIV(Particle Image Velocimetry) measurement at three spaces of plates for 5, 10 and 15 mm with variation of inlet flow rates of $0.25m^3$/h and $0.5m^3$/h. The experimental results showed that the space of the plates acts a significant role in the separating process.

  • PDF

평행판식 유수분리기에서 분리판실의 유동특성에 관한 연구 (A Study on the Flow Characteristics for the Plate Chamber in Type of Oily Parallel Plate Water Separator)

  • 김준효;한원희
    • 동력기계공학회지
    • /
    • 제5권1호
    • /
    • pp.64-72
    • /
    • 2001
  • According to the regulation of IMO, oil discharge from ships is allowed under 15ppm only and an oil filtering equipment is essential. However, for large ships using heavy fuel oil of over S.G 0.98 and viscosity 380cSt and system oil, it has been in difficulty to process with existing filtering type of oily water separator. A parallel plate type oily water separator which is one of gravity type separators can be used as an assistant equipment for the oil filtering system to meet the present IMO standard of 15 ppm, because it is an efficient method in dealing with a large amount of rich oil with high specific gravity. This work is focused on the fundamental investigation of the performance of the plate type oily water separator by visualization method and PIV(Particle Image Velocimetry) measurement to acquire multi-point velocity data simultaneously. The experimental results showed that the space of the plates acts a significant role in separating process and it was found that an important point to minimize a vortex flow is to flow a large amount of fluid in space of the plates in order to promote the efficiency of separation.

  • PDF

조도를 고려한 R-22용 모세관 선정 선도 (A New Set of Capillary Tube Selection Charts for R-22 in Consideration of the Roughness Effect)

  • 김창년;황의필;박영무
    • 설비공학논문집
    • /
    • 제7권4호
    • /
    • pp.681-693
    • /
    • 1995
  • A new set of capillary tube selection charts for R-22 is proposed. The set of charts takes into account of the roughness effect on the mass flow rate. For this purpose, a set of numerical model is developed and a series of experiments is conducted to verify the numerical model. A numerical model is used to calculated the mass flow rate for several sets of tube diameter, length, inlet pressures and degree of subcooling. The outlet of the tube is controlled to be at critical condition. The experimental flow rate is compared with calculated values. The calculated values are consistently less than the experimental ones except for the flow rate range below 40kg/hr. The deviation is within 10---. Based on the nunmerical model and results of experiments, the set of capillary tube selection charts for R-22 is constructed. The set of charts consists of standard capillary tube chart(L=2030mm, d=1.63mm, ${\varepsilon}=2.5{\mu}m$), non -standard flow factor(${\phi}_1$) chart, and non-standard roughness factor(${\phi}_2$) chart. The mass flow rate, flow factor, and the roughness factor are defined respectively as; $\dot{m}={\phi}_1{\phi}_2\dot{m}_{standard}\\{\phi}_1=\frac{\dot{m}(L,\;d,\;\varepsilon_{standard})}{\dot{m}_{standard}(L_{standard},\;d_{standard},\;{\varepsilon}_{standard})}\\{\phi}_2=\frac{\dot{m}(L_{standard},\;d_{standard},\;{\varepsilon})}{\dot{m}_{standard}(L_{standard},\;d_{standard},\;{\varepsilon}_{standard})}$.

  • PDF