• 제목/요약/키워드: Oil Film Thickness

검색결과 154건 처리시간 0.019초

A Numerical Analysis of the Elastohydrodynamic Lubrication of Connecting Rod Bearings (커넥팅 로드 베어링의 EHL에 관한 수치해석)

  • 김병직;김경웅
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.63-71
    • /
    • 1996
  • The connecting rod bearing, which is subjected to periodical dynamic loading, is an impoRant component of the reciprocating engine. In the operation of this bearing, significant parameters are the oil film thickness and the film pressure. Peak film pressures of 20-30 MPa are not uncommon. So the elastic deformation of the bearing housing can have a significant effect on the bearing performance. In this study, a numerical analysis of connecting rod bearing is investigated. Elastic deformation of the bearing housing is considered in the analysis. Separate hydrodynamic and structural analysis are coupled through a direct iterative process. It is shown that as the result of the elastic deformation of the bearing housing, the eccentricity ratio is increased, and the minimum value of the minimum film thickness and the maximum value of the maximum film pressure are decreased. The variations of rotational speed and cylinder pressure affect the minimum film thickness and the maximum film pressure variations of the connecting rod bearing.

An Experimental Study on the Recovery of Diesel Oil Using a Drum Type Skimmer (드럼식 유회수기의 디젤유 회수에 관한 실험적 연구)

  • Song Dong-Eub;Jung Song-Whoan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • 제6권4호
    • /
    • pp.52-66
    • /
    • 2003
  • Generally we have difficulty in removing oil using mechanical devices because recovery rate and recovery efficiency decrease remarkably when operating in thin oil films or in oils of very high viscosity In the Present study a series of experiments were carried out to study the effect of operating conditions on the rate of recovery for the spilled oil using a drum type skimmer. For each set of experiments depth of immersion, oil film thickness and the circumferential speeds were varied systematically to find the effects on the recovery rate. The results shows that recovery rate is dependent on the contact angle for the depth of immersion and the highest rate of oil recovery shows in the case of a contact angle of 45°(h/d=0.15). For the removal of spilled oil the optimal circumferential speed can be found as the critical value to reach the saturated recovery rate for a given oil film thickness and depth of immersion. Even in thin oil thickness we have enough recovery rate and recovery efficiency within critical circumferential speed this way.

  • PDF

Measurement of EHL Film Thickness in Oil-in-Water Emulsion Lubrication (O/W Emulsion 潤滑에서의 彈性流體潤滑膜두께의 측정)

  • ;木村好次;橋爪克幸
    • Tribology and Lubricants
    • /
    • 제2권2호
    • /
    • pp.27-31
    • /
    • 1986
  • By Bong Goo Rhee, College of Engineering, The Univ. of Won Kwang (344-2, Sinyongdong, Iri-shi, 510 Chunpuk-do, Korea), Yoshitsugu Kimura and Kazumi Okada, Institute of Interdisciplinary Research, Faculty of Engineering, The Univ. of Tokyo(4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan), Katsuyuki Hashizume, Taiho Kogyo(2-47 Hosoya-Cho, Toyoda-Shi 471, Japan) and Chang Heon Chi, The G. S of Chon buk N. Unv. It is empirically known that, in concentrated conjunctions lubricated with O/W emulsions, only the oil is entrained to form elastohydrodynamic films. In the present work, this phenomenon is studied experimentally and the result is compared with a theory Which employes a starved lubrication concept. The experiment is conducted in a four roller machine with 0/W emulsions of varying concentration of oil, i.e. beef tallow, in which the film thickness is determined by detecting the rate of X-ray transmission through the conjunction. Excellent agreement is found between the experimental and the theoretical results.

Aeration Efface on the Oil Supply System of Engine Crankshaft Bearing (Aeration이 엔진 크랭크샤프트 베어링 오일공급 시스템에 미치는 영향)

  • 윤정의
    • Tribology and Lubricants
    • /
    • 제20권3호
    • /
    • pp.119-124
    • /
    • 2004
  • Engine bearing system is generally affected by aeration. In this paper, the aeration effects on the engine crankshaft bearing system were studied. To do this, unsteady oil flow analysis on the engine crankshaft oil circuit system was carried out. And aeration effects on the bearing system were simulated to figure out lubrication characteristics of the each bearing such as oil flow rate, minimum oil film thickness, friction loss and increase of oil temperature.

A Study on Dynamics Characteristic Analysis of Elliptical Journal Bearing (타원형 저어널 베어링의 동특성 해석에 관한 연구)

  • Park, Seong-Hwan;O, Taek-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제19권7호
    • /
    • pp.20-27
    • /
    • 2002
  • An analysis model for an elliptical fluid film bearing is described. The principles of hydrodynamic lubrication are outlined together with an expanded version of the governing pressure field equation as related to elliptical journal bearing. Finite element method approximations are given for the pressure field equation and a temperature model, both related to the fluid film thickness. The thermal effects in the lubricant viscosity, lubricant film thickness, variation of the journal rotating speed and influence of turbulence are investigated in this paper A finite element model and an iterative computational process are described, whereby full simultaneously converged field solutions for fluid film thickness, temperature, viscosity, pressure, stiffness and damping coefficient are obtained.

Lubrication Analysis of Dynamically-Loaded Crosshead Bearing for Marine Engine (동하중을 받는 박용엔진 크로스헤드 베어링의 윤활해석)

  • 김정훈;김창희;이성우;이득우
    • Tribology and Lubricants
    • /
    • 제13권2호
    • /
    • pp.46-51
    • /
    • 1997
  • Crosshead bearings in two-stroke marine diesel engines are operated under severe conditions of lubrication because the load on the bearing is unidirectional and the sliding speed is very low and oscillatory. In this paper, the motion of journal in a bearing is investigated using the lubrication theory. Several locus paths are presented to show the effects of oil groove size, bearing clearance and oil inlet pressure. It is found that the minimum film thickness is affected by the oil groove and bearing clearance, and the oil groove is an important design factor.

Experimental Study on the Characteristics of the Pad Fluttering in a Tilting Pad Journal Bearing (틸팅패드 저어널베어링의 패드 Fluttering 특성에 관한 실험적 연구)

  • Yang, Seong-Heon;Kim, Cha-Seil;Ha, Hyun-Chen;Yang, Seong-Heon
    • Tribology and Lubricants
    • /
    • 제18권5호
    • /
    • pp.357-363
    • /
    • 2002
  • The vibration characteristics of the pad fluttering in a fluid film tilting pad journal bearing (4-pad LBP) have been investigated experimentally under the different values of oil supply flow rate, bearing load and shaft speed. The vibration characteristics of the pad fluttering are estimated by measuring the time signal of circumferential distribution of the film thickness and the cascade plot of the response of the relative displacement between the bearing and the shaft. It is shown that the vibration frequency of the pad fluttering has a sub-synchronous frequency and almost does not change by the increase of shaft speed. However the vibration amplitude is increased by the increase of shaft speed. From those experimental results, pad fluttering can be thought of as a self-excited vibration. The incipient pad fluttering velocity is increased by the increase of oil supply flow rate and by the decrease of bearing load. It is observed that the vibration amplitude of the pad fluttering can be decrease by the control of supply oil flow rate effectively. And also It is known that the outbreak of pad fluttering does not concern with the shaft vibration.

Experimental Study on the Characteristics of the Pad Fluttering in a Tilting Pad Journal Bearing (틸팅패드 저어널베어링의 패드 Fluttering 특성에 관한 실험적 연구)

  • 양승헌;하현천;김재실
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.228-234
    • /
    • 2000
  • The vibration characteristics of the pad fluttering in a fluid film tilting pad journal bearing(4-pad LBP) have been investigated experimentally under the different values of oil supply flow rate, bearing load and shaft speed. The vibration characteristics of the pad fluttering are estimated by measuring the time signal of circumferential distribution of the film thickness and the cascade plot of the response of the relative displacement between the bearing and the shaft. It is shown that the vibration frequency of the pad fluttering has a sub-synchronous frequency and 31mos1 does not change by the increase of shaft speed. However the vibration amplitude is increased by the increase of shaft speed. From those experimental results, pad fluttering can be thought of as a self-excited vibration. The incipient pad fluttering velocity is increased by the increase of oil supply rate and by the decrease of bearing load. It is observed that the vibration amplitude of the pad fluttering can be decreased by the control of supply oil flow rate effectively. And also It is known that the outbreak of pad fluttering does not concern with the shaft vibration.

  • PDF

The Oil Film Analysis of Dynamically Loaded proceeding Bearing in Diesel Engine (동하중(動荷重)을 받는 선박용(船舶用) 디젤 엔진의 저널 베어링 유막해석(油膜解析)에 관한 연구(硏究))

  • Cha, Ji-Hyoub;Lee, Sang-Su;Kim, Jeong-Ryul;Kim, Ju-Tae;Kim, Jong-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.160-165
    • /
    • 2005
  • The proceeding bearings of marine diesel engine are affected by dynamic loads from the cylinder gas pressure and the inertia force from the crank mechanism. Oil film must support the load of the shaft and it also must protect the proceeding and the bearings from damage. This study uses Goenka's new curve fit to carry out the theoretical analysis of oil film in proceeding bearings for MAN B&W 12K90MC-C and Hyundai Heavy Industry Co., Ltd HiMSEN H21/32 Engine. The applied engine's analysis results show the behavior of the proceedings in main and crank pin bearings. The results of this study will be the proper criteria for the proceeding bearings design and be available for development of the new technology in the proceeding bearing and for the high strength lining coating.

  • PDF

Wear Analysis of Engine Bearings at Constant Shaft Angular Speed during Firing State - Part II: Calculation of the Wear on Journal Bearings (파이어링 상태의 일정 축 각속도에서 엔진베어링의 마모 해석 - Part II: 저어널베어링 마모 계산)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.146-159
    • /
    • 2018
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings of a four-strokes and four-cylinder engine operating at a constant angular crank shaft speed during firing conditions. To decide whether the lubrication state of a journal bearing is in the possible region of wear scar, we utilize the concept of the centerline average surface roughness to define the most oil film thickness scarring wear (MOFTSW) on two rough surfaces. The wear volume is calculated from the wear depth and wear angle, determined by the magnitude of each film thickness on a set of oil films with thicknesses lower than the MOFTSW at every crank angle. To calculate the wear volume at one contact, the wear range ratio during one cycle is used. The total wear volume is then determined by accumulating the wear volume at every contact. The fractional film defect coefficient, asperity load sharing factor, and modified specific wear rate for the application of the mixed-elasto-hydrodynamic lubrication regime are used. The results of this study show that wear occurs only at the connecting-rod big-end bearing. Thus, simulation results of only the big-end bearing are illustrated and analyzed. It is shown that the wear volume of each wear scar group occurs consecutively as the crank angle changes, resulting in the total accumulated wear volume.