• Title/Summary/Keyword: Oil Film Thickness

Search Result 154, Processing Time 0.023 seconds

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

EHD Analysis on Lubrication Mechanics of Connecting Rod Bearing

  • Kim, Chung-Kyun;Kim, Sung-Won;Kim, Han-Goo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.405-406
    • /
    • 2002
  • The main subject of this paper is analyzing the patterns of maximum oil film pressure and the minimum oil film thickness under various pre-conditions of geometric shape as functions of bearing groove and proceeding oil hole in the connecting rod bearing. As the major analytical tool, elastohydrodynamic lubrication analysis has been applied and two-intertwined results of maximum oil film pressure and minimum oil film thickness have been compared and analyzed using EXCITE program. From computed results, the optimal lubrication conditions as geometric shape of bearing groove and the proceeding oil hole have been investigated. This may be useful for the bearing designer as a firm reference.

  • PDF

A Study on the Dynamic Behaviors of Engine Bearing with the Consideration of Elastic Deformation in the Con-Rod System (탄성변형을 고려한 엔진베어링의 동적 거동에 대한 연구)

  • Jang Siyoul;Park Gaemin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.275-282
    • /
    • 2004
  • The engine bearing transmits the powers from cylinder to crankshaft with small clearance between con-rod and crankpin. The minimum oil film thickness is a significant parameter in the operation of bearing. The contact pressure of bearing should be considered for the reason that elastic deformation of bearing be caused by contact pressure of bearing. There are important factors which are maintaining of minimum oil film thickness expecting of the length of maximum and minimum oil film thickness with changing of the loads to keep running normally. Furthermore, this study is very crucial to develop the design of engine bearing and crankshaft system.

  • PDF

OPERATION OF TILTING 5-PADS proceeding BEARING AT DIFFERENT GEOMETRIC PARAMETERS OF PADS

  • Strzelecki, S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.99-100
    • /
    • 2002
  • Radial, tilting-pad proceeding bearings are applied in high speed rotating machines operating at stable small and mean loads and the peripheral speeds of proceeding reaching 150 m/s. The operation of bearing can be determined by static characteristics including the oil film pressure, temperature and viscosity distributions, minimum oil film thickness, load capacity, power loss, oil flow. The operation of 5-lobe tilted-pad proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions habe received by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss. oil flow, maximum oil film pressure, maximum temperature were computed for different sets of bearing geometric parameters as: bearing length to diameter ratio, pad angular length and width as well as pad relative clearance.

  • PDF

Visualization of Oil Behavior in Piston Land Region (피스톤 랜드 부에서 오일거동의 가시화)

  • 민병순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.105-113
    • /
    • 2000
  • In order to clarify the final process of oil consumption, the distribution and flow of oil through each ring were visualized by induced fluorescence method. Motoring and firing test were performed in a single cylinder research engine with transparent cylinder liner. The appropriate calibration techniques were used to solve the unstability of induced light intensity as well as to know the relation of the oil film thickness and output signal. Oil behavior was also observed at dynamic state by high speed CCD camera. By analyzing the oil film thickness converted from the photographed image, it was observed that the main route of oil transport through each ring is the end gap under the usual operating condition, low engine speed and low load condition. Oil film thickness is observed to be irregular and tend to move in a body horizontally at a given piston land. And it is also found that oil flows through oil ring gap so quickly that it can be observed in a single cycle, but it flows so slowly through top and 2nd compression rings that it takes quite a long time to detect the flow.

  • PDF

An Analytical Study on the Lubrication Characteristics between the Piston Ring and Grooved Cylinder Liner (그루브가 있는 실린더 라이너와 피스톤 링 사이의 윤활 특성에 대한 해석적 연구)

  • 조명래;한동철
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.114-120
    • /
    • 2000
  • This paper reports on the theoretical analysis on the lubrication characteristics between the piston ring and the grooved cylinder liner. The circular shape piston ring and two types grooves are consider, and the minimum oil film thickness during the full engine cycle are obtained by using iterative technique. The comparative results of minimum oil film thickness and viscous friction force between the smooth and grooved liner are presented. And various design parameter of piston ring and liner groove are tested. The groove in the liner generally reduces the minimum value of minimum oil film thickness, but the maximum viscous friction force is increased at the minimum film position.

Analytical Study on the Optimized Design of Engine Bearings for a Passenger Car (자동차용 엔진베어링의 최적설계에 관한 해석적 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, the minimum oil film thickness and the maximum oil film pressure of engine bearings have been analyzed by using the elastohydrodynamic theory and Taguchi's design method as functions of the oil groove width, oil hole diameter, oil hole position, and oil supply pressure. The optimized design of the engine bearing f3r an automotive Diesel engine is very important for supporting a load-carrying capacity due to gas pres-sures from the engine combustion chamber and inertia forces of the piston. The optimized design data of engine bearings indicated that the optimized oil groove width and an oil diameter of a engine bearing are 8mm at the speed of 2,000 rpm for a given 4-cylinder Diesel engine. Thus, the oil groove oil groove and an oil hole for high performances of an engine bearing may be considered as major design parameters compared to other design factors, which are strongly related to the minimum oil film thickness and the maximum oil pressure distribution of the engine oil.

Numerical Analysis on the Oil Film Behaviors of Connecting Rod Bearings Based on the Elastohydrodynamic Lubrication (탄성유체윤활에서 작동하는 커넥팅 로드 베어링의 윤활막 거동에 관한 수치적 연구)

  • 김청균;김한구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.36-41
    • /
    • 2004
  • The purpose of this paper is analyzing the oil film pressure distribution and the minimum oil film thickness for a connecting rod bearing using an A VL's EXCITE program. It is very important to understand optimized oil supplying holes and oil groove dimensions for supporting sufficiently inertia forces and gas pressures from the combustion chamber for a Diesel engine. The computed results indicate that the optimized oil groove width of a bearing and oil hole of a journal are recommended for high performance of a connecting rod bearing at the elastohydrodynamic lubrication zone. These results as design parameters are very useful data for a bearing designer as a firm reference of an automotive engine.

Numerical Analysis on the Oil Film Behaviors of Connecting Rod Bearings Based on the Elastohydrodynamic Lubrication (탄성유체윤활에서 작동하는 커넥팅 로드 베어링의 윤활막 거동에 관한 수치적 연구)

  • 김청균;김한구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.34-34
    • /
    • 2004
  • The purpose of this paper is analyzing the oil film pressure distribution and the minimum oil film thickness for a connecting rod bearing using an A VL′s EXCITE program. It is very important to understand optimized oil supplying holes and oil groove dimensions for supporting sufficiently inertia forces and gas pressures from the combustion chamber for a Diesel engine. The computed results indicate that the optimized oil groove width of a bearing and oil hole of a journal are recommended for high performance of a connecting rod bearing at the elastohydrodynamic lubrication zone. These results as design parameters are very useful data for a bearing designer as a firm reference of an automotive engine.

On the Oil Film Behaviors of Engine Bearing Considering Crankshaft Misalignment (크랭크축 경사도를 고려한 엔진 베어링의 유막거동에 관한 연구)

  • Kim, Han-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3119-3124
    • /
    • 2010
  • The purpose of this paper is to analyze dynamic behaviors of the oil film thickness and engine bearings in both aligned and misaligned operation conditions of a crankshaft using computer simulation techniques. A crankshaft as an elastic body is modeled for a misaligned crankshaft which is very important design parameter of the film thickness and engine bearings. In this analysis, a dynamic characteristic of a minimum oil film is analyzed based on the elastohydrodynamic lubrication theory. The boundary conditions for analyzing the film behaviors include non-linear constraint forces and bending moments in engine bearings. The more expedient model of an engine bearing is extended to consider the effect of crankshaft misalignment. The computed results indicate that the minimum oil film thickness that causes a major influence on the performance of engine bearings has showed a decrease of 16% to 24% for the misaligned crankshaft compared with an aligned crankshaft. The computed results show that the misalignment of a crankshaft inevitably brings the reduction of minimum oil film thickness and this may increase the failure of a bearing. These results as design parameters are very useful for a bearing designer as a firm reference data of an automotive engine.