• Title/Summary/Keyword: Ogive-Cylinder

Search Result 14, Processing Time 0.024 seconds

A COMPUTATIONAL STUDY ON THE CHARACTERISTICS OF ASYMMETRIC VORTEX OF TANGENT-OGIVE-CYLINDER FLIGHT VEHICLE AT HIGH ANGLES OF ATTACK (Tangent-Ogive-Cylinder 비행체의 고앙각에서의 비대칭 와류 특성 연구)

  • Lim, S.;Kim, S.D.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.3-7
    • /
    • 2007
  • The characteristics of asymmetric vortex and side force of tangent-ogive-cylinder flight vehicle at high angles of attack have been performed by using upwind Navier-Stokes method with the ${\kappa}-{\omega}$ turbulence model. And Asymmetric transition positions are considered for generation of asymmetric vortex.

  • PDF

NUMERICAL ANALYSIS OF CAVITATION FLOW AROUND OGIVE-CYLINDER AND VENTURI (Ogive-Cylinder 주위와 Venturi에서의 캐비테이션 전산 유동해석)

  • Lee, J.C.;Ahn, B.K.;Kim, D.H.;Kim, C.K.;Park, W.G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.130-133
    • /
    • 2007
  • A two-phase method in CFD has been developed and is applied to model the cavitation flow. The governing equation system is two-phase Navier-Stokes equation, comprised of the mixture mass, momentum and liquid-phase mass equation. It employs an implicite, dual time, preconditioned algorithm using finite difference scheme in curvilineal coordinates and Chien ${\kappa}-{\varepsilon}$ turbulence equation. The experimental cavitating flows around ogive-cylinder and venturi type objects are employed to test the solver. To prove the capabilities of the solver, several three-dimentional examples are presented.

  • PDF

Experimental Study for the Aerodynamic Characteristics of Slanted-Base Ogive Cylinder (기저면이 경사진 Ogive실린더의 공력특성에 관한 실험적 연구)

  • 맹주성;양시영;오세진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2664-2674
    • /
    • 1994
  • Drag, lift, and pitching moment measurements have been made on a range of slanted-base ogive cylinders, using the KANOMAX wind tunnel and balance system. Test Reynolds numbers(based on model maximum diameter) varied from $0.54{\times}10^{5}{\;}to{\;}1.56{\times}10^{5}$. Crossflow velocity maesurement was conducted by 5-hole pitot tube at $Re_{D}=1.46{\times}10^{5}$. For two base angle $({\theta}=30$ and 45 deg.), aerodynamic forces and moment were measured with increasing angle of attack(0~30 deg.). Two types of wake flow were observed, a quasisymetric turbulent closure or a longitudinal vortex flow. Aerodynamic characteristics differ dramatically between the two wake types. It was found that the drag, lift and pitching moment coefficients increased with increasing angle of attack.

Effect of the Flow Actuator on the Asymmetric Vortex at High Angle of Attack (고받음각 오자이브의 비대칭 와류에 작용하는 구동기 효과 분석)

  • Lee, Eunseok;Lee, Jin Ik;Lee, Kwang Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.607-612
    • /
    • 2013
  • The effect of the flow actuator on the asymmetric vortex structure around the ogive-cylinder body with fineness ratio of 4 flying at the speed of Mach 0.1 at angle of attack of 50 degree is studied. The ogive-cylinder model is developed with the actuator placed near the nose tip and numerically simulated using the in-house CFD code named KFLOW. The numerical simulation employs two different actuator modeling: one is the boundary condition given by blowing normal to the surface and another shearing on the surface. The numerical simulation reveals that response of the vortex structure to the actuation is dependent on the type of modeling as well as the strength and direction of the actuation.

A Steady Method of Damping Coefficient Prediction for Axisymmetric Projectiles (축대칭 발사체의 감쇠계수 계산을 위한 정상 해법)

  • Park, Soo-Hyung;Kwon, Jang-Hyuk;Yu, Yung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.1-8
    • /
    • 2006
  • A steady prediction method is presented to compute dynamic damping coefficients for axisymmetric projectiles. Viscous flow analysis is essential to the steady method using a zero-spin coning motion in the inertial coordinate frame. The present method is applied to compute the pitching moment and the pitch-damping moment coefficients for the Army-Navy Spinning Rocket. The results are in good agreement with the parabolized Navier-Stokes data, range data, and unsteady prediction data. Predictions for Secant-Ogive-Cylinder configurations are performed to investigate effects of afterbody geometries. To investigate the geometrical effect and flow physics, the longitudinal developments of the coefficients are examined in detail.

Application of Characteristic Boundary Conditions

  • Hong Seung Gyu;Lee Gwang Seop
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.74-84
    • /
    • 1996
  • Characteristic boundary conditions are discussed in conjunction with a flux-difference splitting formulation as modified from Roe's linearization. Details of how one can implement the characteristic boundary conditions which are compatible with the discrete formulation at interior points are given for different types of boundaries including subsonic outflow and adiabatic wall. The latter conditions are demonstrated through computation of supersonic ogive-cylinder flow at high angle of attack and the computed wall pressure distribution is compared with experiment.

  • PDF

EXPERIMENTAL REPRODUCTION AND NUMERICAL ANALYSIS OF THE SIDE FORCE ON AN OGIVE FOREBODY AT A HIGH ANGLE OF ATTACK (고받음각 동체에 발생하는 측력의 실험적 재현 및 수치적 분석)

  • Lee, E.S.;Lee, J.I.;Lee, K.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.28-35
    • /
    • 2013
  • Behavior of the side force generated at high angles of attack by two ogive-cylinder bodies of revolution with nose fineness ratio of 2.3 (B1) and 3.5 (B2) and the effect of a strip placed close the nose tip of each body (B1S and B2S) are analyzed through the wind tunnel test at ReD=200,000 and a=42~60 deg. The side force generated by B1 is increased by placing a strip. The side force generated by B2 is in the starboard direction and its magnitude is higher than that of the B1S. The effect of the strips with various dimensions placed on B2 is investigated. It is found that the 4-layer strip placed on the starboard reversed the direction of the side force into port direction. It is confirmed by numerical simulations that the strip promotes the flow separation and increases the average pressure on the side where it is placed and consequently produces the side force in the corresponding direction.

An Investigation on the Surface Flow Characteristics of Ogive-cylinder using the Infrared Ray Thermogram 3D Mapping Technique (적외선 온도 측정 3차원 매핑 기법을 이용한 오자이브 실린더 표면 유동 특성 파악)

  • LEE, Jaeho
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.57-63
    • /
    • 2018
  • IR thermography is a non-invasive method and used for the visualization of the surface temperature of the model. However, this technique only derives 2D results and not quantitative data. The goal of this study is to apply the 3D mapping technique for IR thermography. The wind tunnel model is an ogive-cylinder with a wind speed of 20 m/s ~ 80 m/s and the angle of attack ranging from $0^{\circ}$ to $90^{\circ}$. The real location of the model was made to correspond with the position of the IR image using the makers. Based on this result, quantitative results were obtained. The 3D mapping method was verified by comparing the separation point and the theoretical value.

Applications of Characteristic Boundary Conditions within CFDS Numerical Framework (CFDS기법에 연계된 특성경계조건에 응용성에 대한 소개)

  • Hong S. K.;Lee K. S.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.43-59
    • /
    • 2000
  • Characteristic boundary conditions are discussed in conjunction with a flux-difference splitting formulation as modified from Roe's linearization. Details of how one can implement the characteristic boundary conditions which are made compatible with the interior point formulation are described for different types of boundaries including subsonic outflow and adiabatic wall. The validity of boundary conditions are demonstrated through computation of transonic airfoil, supersonic ogive-cylinder, hypersonic cylinder, and S-duct internal flows. The computed wall pressure distributions are compared with published experimental and computed data. Objectives of this paper are thus to give insight of formulation procedure of a flux-difference splitting method and to pave ways for other users to adopt present boundary procedure on their numerical methods.

  • PDF

Turbulent flow fields analysis using CFDS scheme (CFDS기법을 이용한 난류 유동장 해석)

  • Moon S. M.;Lee J. S.;Kim C.;Rho O. H.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.51-59
    • /
    • 2001
  • An evaluation of one zero-equation and two one-equation eddy viscosity-transport turbulence closure models as implemented CFDS(Characteristic Flux Difference Splitting ) code is presented herein. Comparisons of Baldwin-Lomax model as zero-equation and Baldwin-Barth and Spalart-Allmaras model as one-equation are presented for three test cases, first inlvolving the 3 dimensional supersonic flow at M=1.98 over tangent ogive cylinder, second involving the 2 dimensional transonic flow at M=0.79 over RAE 2822 airfoil, third involving the 3 dimensional transonic flow at M=0.84 over ONERA M6 wing. The numerical results of CFDS code will also examined through direct comparison with experimental data.

  • PDF