The motion responses of a 5-MW floating offshore wind turbine were simulated in regular and irregular waves and its RAOs and significant motion responses were calculated, respectively. The floating offshore wind turbine employed in this simulation was the OC3-Hywind designed by the National Renewable Research Laboratory, USA. The numerical simulation was carried out using MOSES (Multi-Operational Structural Engineering Simulator), which is widely used to analyze and design floating offshore structures in the gas and oil industry.
Floating wind turbines have been suggested as a feasible solution for going further offshore into deeper waters. However, floating platforms cause additional unsteady motions induced by wind and wave conditions, so that it is difficult to predict annual energy output of wind turbines by using conventional power prediction method. That is because sectional inflow condition on a rotor plane is varied by unsteady motion of floating platforms. Therefore, aerodynamic simulation using Vortex Lattice Method(VLM) were used to investigate the influence of motion on the aerodynamic performance of a floating offshore wind turbine. Simulation with individual motion of offshore platform were compared to the case of onshore platform and carried out according to the wave height and the wave angular frequency.
Nowadays, offshore wind energy experiences a rapid development because of its wind condition and no noise impact problem. Different from Europe, offshore wind is just started in Asia. More work and research are needed in Korea. In this work, a three-bladed upwind variable speed pitch controlled 5MW wind turbine on a jacket support structure is used. During the simulation, several design load cases are investigated in two different fully coupled aero-hydro-servo-elastic codes. Some critical loads on the foundation are compared and analyzed.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.27
no.5
/
pp.39-45
/
2013
Wind power is one of the fastest growing renewable energy sources. In these days, wind turbine shifts from onshore to offshore because the offshore wind farm has a abundant wind resource. However, offshore wind turbine is not easy to access, it has a long downtime when the failures of the wind turbine component occur. Therefore, the appropriate wind turbine maintenance plan is required to meet the economic and reliability of the components. This paper proposes the maintenance planning method based on the RCM(Reliability Centered Maintenance) to determine an economical maintenance cycle to satisfy the appropriate reliability of the wind turbine components. In order to compare the proposed method with the conventional RCM method, critical components are selected in the case study because they have a long downtime and a large amount of total cost.
In recent years, many countries have been endeavoring to exploit the offshore wind energy in terms of overcoming the limitations of on-land wind energy. Considering that mountains cover 70 percent of the Korean Peninsula and arable plains for wind energy are negligibly small, Korean government aggressively drives the offshore wind development of the Korean Peninsula. As part of preliminary investigation of offshore wind resources, KEPCO-RI (Korea Electric Power Corporation-Research Institute) has been analyzing marine buoy datasets measured at 5 positions over the period of 12 years, including estimation of extreme wind speed. It can be observed that variation of yearly wind speed, monthly wind speed as well as frequency distribution of wind direction. Wind classes of buoy sites are estimated by extrapolated average wind speed using log law. In addition, wind turbine class based on IEC code is assessed for evaluation of suitable wind turbine.
A large number of offshore wind turbines with fixed foundations have been installed in water depths up to 30 meters supporting 3-5MW wind turbines. Some floating platform concepts of offshore wind turbines were designed to be suitable for deployment in water depths greater than 60 meters. However the optimal design of this system in water depth 50 meters remains unknown. In this paper, a 5-MW wind turbine located on a TLP type platform was suggested for installation in this water depth. It is moored by a taut mooring line. For controlling the wind turbine always be operated at the upwind direction, one yaw controlling was attached at the tower. To study motion characteristics of this platform, a model was built with a 1/128 scale ratio. The model test was carried out in various conditions, including waves, winds and rotating rotor effect in the Ocean Engineering Wide Tank of the University Of Ulsan (UOU). The characteristic motions of the TLP platform were captured and the effective RAOs were obtained.
Ku, Namkug;Roh, Myung-Il;Ha, Sol;Shin, Hyun-Kyoung
Korean Journal of Computational Design and Engineering
/
v.20
no.1
/
pp.84-92
/
2015
In this study, we describe a method to analysis dynamic behavior of an offshore wind turbine in the frequency domain and expected effects of the method. An offshore wind turbine, which is composed of platform, tower, nacelle, hubs, and blades, can be considered as multibody systems. In general, the dynamic analysis of multibody systems are carried out in the time domain, because the equations of motion derived based on the multibody dynamics are generally nonlinear differential equations. However, analyzing the dynamic behavior in time domain takes longer than in frequency domain. In this study, therefore, we describe how to analysis the system multibody systems in the frequency domain. For the frequency domain analysis, the non-linear differential equations are linearized using total derivative and Taylor series expansions, and then the linearized equations are solved in time domain. This method was applied to analysis of double pendulum system for the verification of its effectiveness, and the equations of motion for the offshore wind turbine was derived with assuming that the wind turbine is rigid multibody systems. Using this method, the dynamic behavior analysis of the offshore wind turbine can be expected to take less time.
Journal of the Computational Structural Engineering Institute of Korea
/
v.26
no.4
/
pp.233-239
/
2013
Recently, a number of wind turbines are being installed due to the increase of interest in renewable, environment-friendly energy. Especially, an offshore wind turbine is being watched with keen interest in that it has no difficulty in securing a site and can get high quality of wind, as compared with a wind turbine on land. The offshore wind turbine is transferred to and installed on the site by an offshore floating crane after it was made in a factory on land such as shipyard. At this time, it is important to secure the safety of the turbine because of its huge size and expensive cost. Thus, a dynamic analysis of the offshore wind turbine which is connedted with the offshore floating crane was performed based on the multibody systems dynamics in this study. As a result. it is shown that the analysis can be applied to verify the safety of a method for the transportation and installation of the offshore wind turbine suspended by the crane.
Journal of the Society of Naval Architects of Korea
/
v.46
no.5
/
pp.536-544
/
2009
The performance of radars operated near an offshore wind farm region may be degraded due to the distorted signals by wind turbines. This degradation of radar systems includes ghost effects and doppler effects by a tower, nacelle, and turbine blades consisting of the wind turbine. In this paper, electromagnetic wave backscatterings from a offshore wind turbine are numerically simulated in terms of temporal radar cross section and radar cross section spectra, using a quasi-static approach based on physical optics and physical theory of diffraction. The simulations are carried out at 3.05 GHz for the seven yaw angles and four blade pitch angles. From the results, radar cross section values and doppler effect as turbine blades rotate are investigated.
Jang, Hwa Sup;Kim, Ho Sun;Lee, Kyoung Woo;Kim, Mann Eung
KSCE Journal of Civil and Environmental Engineering Research
/
v.32
no.2B
/
pp.149-152
/
2012
This study is carried out to analyze the design method and safety rate degree for IEC 61400-3, DNV-OS-J101, GL Wind, EUROCODE, AASHTO and domestic design standard used for offshore wind turbine foundation design. The findings will provide a design parameter for domestic offshore wind turbine foundation design. The design of the steel Support Structure of an offshore wind turbine can be based on either the Allowable Stress Design(ASD) approach or the Load and Resistance Factor Design(LRFD) approach. The design principles with the use of LRFD method are described with various limit states. A limit state is a condition beyond which a structure or part of a structure exceeds a specified design requirement. Design by the LRFD method is a design method by which the target component safety level is obtained by applying load and resistance factors to characteristic reference values of loads (load effects)and structural resistance. When the strength design of the steel Support Structure is based on the ASD approach, the design acceptance criteria are to be expressed in terms of appropriate basic allowable stresses in accordance with the requirements specified. After comparison an economics domestic offshore wind turbine foundation standard will be developed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.