• Title/Summary/Keyword: Offshore Meteorological Tower

Search Result 10, Processing Time 0.027 seconds

Long-Term Wind Resource Mapping of Korean West-South Offshore for the 2.5 GW Offshore Wind Power Project

  • Kim, Hyun-Goo;Jang, Moon-Seok;Ko, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1305-1316
    • /
    • 2013
  • A long-term wind resource map was made to provide the key design data for the 2.5 GW Korean West-South Offshore Wind Project, and its reliability was validated. A one-way dynamic downscaling of the MERRA reanalysis meteorological data of the Yeongwang-Gochang offshore was carried out using WindSim, a Computational Fluid Dynamics based wind resource mapping software, to establish a 33-year time series wind resource map of 100 m x 100 m spatial resolution and 1-hour interval temporal resolution from 1979 to 2012. The simulated wind resource map was validated by comparison with wind measurement data from the HeMOSU offshore meteorological tower, the Wangdeungdo Island meteorological tower, and the Gochang transmission tower on the nearby coastline, and the uncertainty due to long-term variability was analyzed. The long-term variability of the wind power was investigated in inter-annual, monthly, and daily units while the short-term variability was examined as the pattern of the coefficient of variation in hourly units. The results showed that the inter-annual variability had a maximum wind index variance of 22.3% while the short-term variability, i.e., the annual standard deviation of the hourly average wind power, was $0.041{\pm}0.001$, indicating steady variability.

Dynamic Responses of Offshore Meteorological Tower Under Wind and Wave (바람과 파랑을 받는 해상 풍력 기상탑의 동적 응답)

  • Kwon, Soon-Duck
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.171-177
    • /
    • 2018
  • In order to investigate the cause of damage of the offshore meteorological tower, the measured wind speed data were analyzed, the dynamic displacement due to fluctuating wind load and wave load was calculated, and the fatigue was examined for vortex-induced vibration. It was confirmed from the results that the vibration lasting for four hours occurred in the meteorological tower when the maximum wind speeds for 10 minutes were compared for both the vane anemometer and ultrasonic anemometer. The effect of the gust wind on the dynamic response of the meteorological tower was greater than the wave. However, the combined forces acting on the meteorological tower was much lower than the design force even though the wind and wave loads were simultaneously applied. The vortex-induced vibration seemed to be cause of the fatigue failure in the connecting bolts. The destruction of the offshore meteorological tower was considered to be a vortex-induced vibration, not a fluctuating fluid flows.

Estimation of Dynamic Characteristics of an Offshore Meteorological Tower using Ambient Measurements (상시계측을 통한 해상기상탑의 동적특성 평가)

  • Gyehee Lee;Le Quoc Cuong;Daejin Kwag
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.91-99
    • /
    • 2023
  • In research conducted on a southwestern Korean offshore meteorological tower, acceleration datasets were gathered over half a year with time-history sensors. To enhance data credibility, a parallel measurement system was used for verification. A model of the tower was configured using beam elements, and with modifications accounting for added stiffness from auxiliary structures. Ground interactions were considered as calibrated springs based on soil layer properties. The tower's dynamic attributes and mass sensitivity were discerned using eigenvalue analysis. The structural natural frequency was consistent, with variations primarily due to new equipment adding approximately 1400 kgs. With free vibration damping assumptions, a damping ratio of roughly 1 % was derived.

A Study on Design of Offshore Meteorological Tower (해상기상탑 설계에 관한 연구)

  • Moon, Chae-Joo;Chang, Young-Hak;Park, Tae-Sik;Jeong, Moon-Seon;Joo, Hyo-Joon;Kwon, O-Soon;Kwag, Dae-Jin;Jeong, Gwon-Seong
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.60-65
    • /
    • 2014
  • A meteorological(met) tower is the first structure installed during the planning stages of offshore wind farm. The purpose of this paper is to design the met tower with tripod bucket type support structure and to install the sensors. The support structure consist of a central steel shaft connected to three cylindrical steel suction buckets which is more cheaper than monopile or jacket type. And the remote wind condition sensors and marine monitoring equipment, including adcp, pressure type tide gauge, wave height sensors, and scour sensors, remote power supply are installed. The manufactured met tower constructed on sea area which is in front of Gasa island. All of functions of met tower showed normal operation conditions and the wind data got by remote data collection system successfully.

A data-driven method for the reliability analysis of a transmission line under wind loads

  • Xing Fu;Wen-Long Du;Gang Li;Zhi-Qian Dong;Hong-Nan Li
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.461-473
    • /
    • 2024
  • This study focuses on the reliability of a transmission line under wind excitation and evaluates the failure probability using explicit data resources. The data-driven framework for calculating the failure probability of a transmission line subjected to wind loading is presented, and a probabilistic method for estimating the yearly extreme wind speeds in each wind direction is provided to compensate for the incompleteness of meteorological data. Meteorological data from the Xuwen National Weather Station are used to analyze the distribution characteristics of wind speed and wind direction, fitted with the generalized extreme value distribution. Then, the most vulnerable tower is identified to obtain the fragility curves in all wind directions based on uncertainty analysis. Finally, the failure probabilities are calculated based on the presented method. The simulation results reveal that the failure probability of the employed tower increases over time and that the joint probability distribution of the wind speed and wind direction must be considered to avoid overestimating the failure probability. Additionally, the mixed wind climates (synoptic wind and typhoon) have great influence on the estimation of structural failure probability and should be considered.

Dynamic Behavior Analysis of Floating Offshore Wind Turbine Including Flexible Effects of Tower and Blade (타워와 블레이드의 탄성효과를 고려한 부유식 해상풍력발전기의 동적거동해석)

  • Jung, Hye-Young;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.905-911
    • /
    • 2012
  • To establish a floating offshore wind turbine simulation model, a tension leg platform is added to an onshore wind turbine. The wind load is calculated by using meteorological administration data and a power law that defines the wind velocity according to the height from the sea surface. The wind load is applied to the blade and wind tower at a regular distance. The relative Morison equation is employed to generate the wave load. The rated rotor speed (18 rpm) is applied to the hub as a motion. The dynamic behavior of a 2-MW floating offshore wind turbine subjected to the wave excitation and wind load is analyzed. The flexible effects of the wind tower and the blade are analyzed. The flexible model of the wind tower and blade is established to examine the natural frequency of the TLP-type offshore wind turbine. To study the effect of the flexible tower and blade on the floating offshore wind turbine, we modeled the flexible tower model and flexible tower-blade model and compared it with a rigid model.

Wind characteristics of a strong typhoon in marine surface boundary layer

  • Song, Lili;Li, Q.S.;Chen, Wenchao;Qin, Peng;Huang, Haohui;He, Y.C.
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-15
    • /
    • 2012
  • High-resolution wind data were acquired from a 100-m high offshore tower during the passage of Typhoon Hagupit in September, 2008. The meteorological tower was equipped with an ultrasonic anemometer and a number of cup anemometers at heights between 10 and 100 m. Wind characteristics of the strong typhoon, such as mean wind speed and wind direction, turbulence intensity, turbulence integral length scale, gust factor and power spectra of wind velocity, vertical profiles of mean wind speed were investigated in detail based on the wind data recorded during the strong typhoon. The measured results revealed that the wind characteristics in different stages during the typhoon varied remarkably. Through comparison with non-typhoon wind measurements, the phenomena of enhanced levels of turbulence intensity, gust factors, turbulence integral length scale and spectral magnitudes in typhoon boundary layer were observed. The monitored data and analysis results are expected to be useful for the wind-resistant design of offshore structures and buildings on seashores in typhoon-prone regions.

A Simple Ensemble Prediction System for Wind Power Forecasting - Evaluation by Typhoon Bolaven Case - (풍력예보를 위한 단순 앙상블예측시스템 - 태풍 볼라벤 사례를 통한 평가 -)

  • Kim, Jin-Young;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Ji-Young;Lee, Jun-Shin
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.27-37
    • /
    • 2016
  • A simple but practical Ensemble Prediction System(EPS) for wind power forecasting was developed and evaluated using the measurement of the offshore meteorological tower, HeMOSU-1(Herald of Meteorological and Oceanographic Special Unite-1) installed at the Southwest Offshore in South Korea. The EPS developed by the Korea Institute of Energy Research is based on a simple ensemble mean of two Numerical Weather Prediction(NWP) models, WRF-NMM and WRF-ARW. In addition, the Kalman Filter is applied for real-time quality improvement of wind ensembles. All forecasts with EPS were analyzed in comparison with the HeMOSU-1 measurements at 97 m above sea level during Typhoon Bolaven episode in August 2012. The results indicate that EPS was in the best agreement with the in-situ measurement regarding (peak) wind speed and cut-out speed incidence. The RMSE of wind speed was 1.44 m/s while the incidence time lag of cut-out wind speed was 0 hour, which means that the EPS properly predicted a development and its movement. The duration of cut-out wind speed period by the EPS was also acceptable. This study is anticipated to provide a useful quantitative guide and information for a large-scale offshore wind farm operation in the decision making of wind turbine control especially during a typhoon episode.

Estimation of Reference Wind Speeds in Offshore of the Korean Peninsula Using Reanalysis Data Sets (재해석자료를 이용한 한반도 해상의 기준풍속 추정)

  • Kim, Hyun-Goo;Kim, Boyoung;Kang, Yong-Heack;Ha, Young-Cheol
    • New & Renewable Energy
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • To determine the wind turbine class in the offshore of the Korean Peninsula, the reference wind speed for a 50-y return period at the hub height of a wind turbine was estimated using the reanalysis data sets. The most recent reanalysis data, ERA5, showed the highest correlation coefficient (R) of 0.82 with the wind speed measured by the Southwest offshore meteorological tower. However, most of the reanaysis data sets except CFSR underestimated the annual maximum wind speed. The gust factor of converting the 1 h-average into the 10 min-average wind speed was 1.03, which is the same as the WMO reference, using several meteorological towers and lidar measurements. Because the period, frequency, and path of typhoons invading the Korean Peninsula has been changing owing to the climate effect, significant differences occurred in the estimation of the extreme wind speed. Depending on the past data period and length, the extreme wind speed differed by more than 30% and the extreme wind speed decreased as the data period became longer. Finally, a reference wind speed map around the Korean Peninsula was drawn using the data of the last 10 years at the general hub-height of 100 m above the sea level.

Estimation of Representative Wave Period and Optimal Probability Density Function Using Wave Observed Data around Korean Western Coast (국내 서해안 파랑 관측자료를 이용한 대표주기 산정 및 최적 확률밀도함수 추정)

  • Uk-Jae Lee;Hong-Yeon Cho;Jin Ho Park;Dong-Hui Ko
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.146-154
    • /
    • 2023
  • In this study, the peak wave period Tp and mean wave period T02 and Tm-1, 0, which are major parameters for classifying ocean characteristics, were calculated using water surface elevation data observed from the second west coast oceanographic and meteorological observation tower. In addition, the ratio of abnormal data, correlation analysis, and optimal probability density function were estimated. In the case of Tp among the calculated representative periods, the proportion of abnormal data was 5.73% and 0.67% at each point, and T02 was 4.35% and 0.01%. Tm-1, 0 was found to be 2.82% and 0.03%. Meanwhile, as a result of analyzing the relationship between T02 and Tp, the relationship was calculated to be 0.53 and 0.63 for each point. The relationship between Tm-1, 0 and Tp was 1.15 and 1.32, respectively, and T02, Tm-1, 0 was 1.18 and 1.22. As a result of estimating the optimal probability density function of the calculated representative period, Tp followed the 'Log-normal' and 'Normal' distributions at each point, and T02 was 'Gamma', 'Normal' distribution and Tm-1, 0 showed that 'Log-normal' and 'Normal' distribution were dominant, respectively. It is decided that these results can be used as basic data for wave analysis conducted on the west coast.