• Title/Summary/Keyword: Offset distance

Search Result 194, Processing Time 0.029 seconds

INVESTIGATION OF THE PILE MOVEMENT DUE TO TUNNELLING BY MODEL TEST AND NUMERICAL ANALYSIS

  • Lee, Yong-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.104-110
    • /
    • 2010
  • In this study, a series of two-dimensional model test and numerical analysis was carried out to investigate the pile movement due to tunnelling in soft ground. The model test consists of 21 cases according to locations of the pile tip over the centre position of model tunnel. To identify both the pile and ground movements a close-range photogrammetric technique was adopted in the model test. The results from the model test were compared to the two-dimensional finite element analysis using the CRISP program. It was found that the rotation point on the pile was significantly affected by factors such as the offset distance from the model tunnel and the volume loss that occurred during the tunnelling operation.

  • PDF

Design for Microstrip Array Antenna with EMC Dipole for Communication Satellite System (EMC 다이폴을 이용한 CS용 마이크로스트립 어레이 안테나의 설계)

  • 민경식;박세현;김동철;임학규;김상태
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.120-123
    • /
    • 1999
  • This paper presents the design method of EMC(Electromagnetic Coupling) microstrip array antenna for CS(Communication Satellite) system. Microstrip dipole antennas are attractive elements owing to the desirable properties such as simplicity, small size and linear polarization. From the optimum simulation results by the FDTD method[1], design parameters such as EMC dipole length, width, height and offset are discussed at 12CHz. The array characteristics of 5-elements and 10-elements array are also presented. By adjusting geometry of model antenna, we can design dual polarization EMC microstrip dipole antenna for CS system. Direction of nam beam is easily tilted by the control of distance between dipole elements.

  • PDF

Image Registration for Cloudy KOMPSAT-2 Imagery Using Disparity Clustering

  • Kim, Tae-Young;Choi, Myung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • KOMPSAT-2 like other high-resolution satellites has the time and angle difference in the acquisition of the panchromatic (PAN) and multispectral (MS) images because the imaging systems have the offset of the charge coupled device combination in the focal plane. Due to the differences, high altitude and moving objects, such as clouds, have a different position between the PAN and MS images. Therefore, a mis-registration between the PAN and MS images occurs when a registration algorithm extracted matching points from these cloud objects. To overcome this problem, we proposed a new registration method. The main idea is to discard the matching points extracted from cloud boundaries by using an automatic thresholding technique and a classification technique on a distance disparity map of the matching points. The experimental result demonstrates the accuracy of the proposed method at ground region around cloud objects is higher than a general method which does not consider cloud objects. To evaluate the proposed method, we use KOMPSAT-2 cloudy images.

Dynamic fracture instability in brittle materials: Insights from DEM simulations

  • Kou, Miaomiao;Han, Dongchen;Xiao, Congcong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.65-75
    • /
    • 2019
  • In this article, the dynamic fracture instability characteristics, including dynamic crack propagation and crack branching, in PMMA brittle solids under dynamic loading are investigated using the discrete element method (DEM) simulations. The microscopic parameters in DEM are first calibrated using the comparison with the previous experimental results not only in the field of qualitative analysis, but also in the field of quantitative analysis. The calibrating process illustrates that the selected microscopic parameters in DEM are suitable to effectively and accurately simulate dynamic fracture process in PMMA brittle solids subjected to dynamic loads. The typical dynamic fracture behaviors of solids under dynamic loading are then reproduced by DEM. Compared with the previous experimental and numerical results, the present numerical results are in good agreement with the existing ones not only in the field of qualitative analysis, but also in the field of quantitative analysis. Furthermore, effects of dynamic loading magnitude, offset distance of the initial crack and initial crack length on dynamic fracture behaviors are numerically discussed.

The Prevention of the Longitudinal Deformation on the Built­Up Beam by using Induction Heating

  • Park, J.U.;Lee, C.H.;Chang, K.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.7-14
    • /
    • 2003
  • During the manufacture of a ship, longitudinal deformation is produced by fillet welding on the Built­Up beam used to improve the longitudinal strength of a ship. This deformation needs a correcting process separate from a manufacture process and decreases productivity and quality. This deformation is caused by welding moment, which is the value multiplied the shrinking force due to welding by the distance from the neutral axis on a cross section of Built­Up beam. This deformation can be offset by generating a moment which is the same magnitude with and is located in an opposite direction to the welding moment on web plate by induction heating. Accordingly, this study clarifies the creation mechanism of the longitudinal deformation on Built­Up beam with FEM analysis and presents the preventative method of this deformation by induction heating basing the mechanism and verifies its validity through analysis and experiments. The induction heating used here is performed by deciding its location and quantity with experiments and simple equations and by applying them to a real structure.

  • PDF

A Location Management Scheme using Direction Characteristics of Mobile Terminals in Mobile Communication Systems (이동 통신 시스템에서 이동 단말의 방향성을 고려한 위치 관리 기법)

  • 김태수;송의성;한연희;황종선;길준민
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.1
    • /
    • pp.48-64
    • /
    • 2003
  • Recently, as the number of mobile users keeps increasing explosively, the location management to track the mobile users in mobile communication systems is being more important. However, the previous location management schemes have been used static location information without the consideration of a user's moving direction. This results in unnecessary pagings, consequently it increases location management costs. In this paper, we propose a mew location management costs. In this paper, we propose a new location the cell occurred a location update. It also determines whether the location update will be executed or not, by the offset operation of direction vector. Thus, a user's paging areas are generated dynamically along the user's moving direction. The wide of paging areas is also determined dynamically. Besides, we present analytic model for our scheme. To compare with our scheme, the distance-based scheme is analyzed. The numerical result shows that our scheme is more efficient than the distance-based scheme in the most cases except a low CMR. Particularly if a user move into a specific direction, our scheme has the lower location management cost than that of the distance-based scheme.

An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant

  • Peng, Min-jun;Wang, Hang;Chen, Shan-shan;Xia, Geng-lei;Liu, Yong-kuo;Yang, Xu;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.396-410
    • /
    • 2018
  • To assist operators to properly assess the current situation of the plant, accurate fault diagnosis methodology should be available and used. A reliable fault diagnosis method is beneficial for the safety of nuclear power plants. The major idea proposed in this work is integrating the merits of different fault diagnosis methodologies to offset their obvious disadvantages and enhance the accuracy and credibility of on-line fault diagnosis. This methodology uses the principle component analysis-based model and multi-flow model to diagnose fault type. To ensure the accuracy of results from the multi-flow model, a mechanical simulation model is implemented to do the quantitative calculation. More significantly, mechanism simulation is implemented to provide training data with fault signatures. Furthermore, one of the distance formulas in similarity measurement-Mahalanobis distance-is applied for on-line failure degree evaluation. The performance of this methodology was evaluated by applying it to the reactor coolant system of a pressurized water reactor. The results of simulation analysis show the effectiveness and accuracy of this methodology, leading to better confidence of it being integrated as a part of the computerized operator support system to assist operators in decision-making.

Finite Element Analysis on the Supporting Bone according to the Connection Condition of Implant Prosthesis (임플란트 보철물의 연결 여부에 따른 유한요소응력분석)

  • Kang, Jae-Seok;Jeung, Jei-Ok;Lee, Seung-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • The purpose of this study was to compare the stress distribution according to the splinting condition and non-splinting conditions on the finite element models of the two units implant prostheses. The finite element model was designed with the parallel placement of two fixtures ($4.0mm{\times}11.5mm$) on the mandibular 1st and 2nd molars. A cemented abutment and gold screw were used for superstructures. A FEA models assumed a state of optimal osseointegration, as the bone quality, inner cancellous bone and outer 2 mm compact bone was designed. This concluded that the cortical and trabecular bone were assumed to be perfectly bonded to the implant. Splinting condition had 2 mm contact surface and non-splinting condition had $8{\mu}m$ gap between two implant prosthesis. Two group (Splinting and non-splinting) were loaded with 200 N magnitude in vertical axis direction and were divided with subdivision group. Subdivision group was composed of three loading point; Center of central fossa, the 2 mm and 4 mm buccal offset point from the central fossa. Von Mises stress value were recorded and compared in the fixture-bone interface and bucco-lingual sections. The results were as follows; 1. In the vertical loading condition of central fossa, splinting condition had shown a different von Mises stress pattern compared to the non-splinting condition, while the maximum von Mises stress was similar. 2. Stresses around abutment screw were more concentrated in the splinting condition than the non-splinting condition. As the distance from central fossa increased, the stress concentration increased around abutment screw. 3. The magnitude of the stress in the cortical bone, fixture, abutment and gold screw were greater with the 4 mm buccal offset loading of the vertical axis than with the central loading.

Tuned liquid column dampers with adaptive tuning capacity for structural vibration control

  • Shum, K.M.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.543-558
    • /
    • 2005
  • The natural frequencies of a long span bridge vary during its construction and it is thus difficult to apply traditional tuned liquid column dampers (TLCD) with a fixed configuration to reduce bridge vibration. The restriction of TLCD imposed by frequency tuning requirement also make it difficult to be applied to structure with either very low or high natural frequency. A semi-active tuned liquid column damper (SATLCD), whose natural frequency can be altered by active control of liquid column pressure, is studied in this paper. The principle of SATLCD with adaptive tuning capacity is first introduced. The analytical models are then developed for lateral vibration of a structure with SATLCD and torsional vibration of a structure with SATLCD, respectively, under either harmonic or white noise excitation. The non-linear damping property of SATLCD is linearized by an equivalent linearization technique. Extensive parametric studies are finally carried out in the frequency domain to find the beneficial parameters by which the maximum vibration reduction can be achieved. The key parameters investigated include the distance from the centre line of SATLCD to the rotational axis of a structure, the ratio of horizontal length to the total length of liquid column, head loss coefficient, and frequency offset ratio. The investigations demonstrate that SATLCD can provide a greater flexibility for its application in practice and achieve a high degree of vibration reduction. The sensitivity of SATLCD to the frequency offset between the damper and structure can be improved by adapting its frequency precisely to the measured structural frequency.

Development of a Prototype of Guidance System for Rice-transplanter

  • Zhang, Fang-Ming;Shin, Beom-Soo;Feng, Xi-Ming;Li, Yuan;Shou, Ru-Jiang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.255-263
    • /
    • 2013
  • Purpose: It is not easy to drive a rice-transplanter avoiding underlapped or overlapped transplanting in paddy fields. An automated guidance system for the riding-type rice-transplanter would be necessary to operate the rice-transplanter autonomously or to assist the beginning drivers as a driving aid. Methods: A prototype of guidance system was composed of embedded computers, RTK-GPS, and a power-steering mechanism. Two Kalman filters were adopted to overcome sparse positioning data (1 Hz) from the RTK-GPS. A global Kalman filter estimated the posture of rice-transplanter every one second, and a local Kalman filter calculated the posture from every new estimation of the global Kalman filter with an interval of 200 ms. A PID controller was applied to the row-following mode control. A control method of U-turning mode was developed as well. A stepping motor with a reduction gear set was used to rotate the shaft of steering wheel. Results: Test trials for U-turning and row-following modes were done in a paddy field after some parameters have been tuned at the ground speed range of 0.3 ~ 1.2 m/s. The minimum RMS error of offset was 3.13 cm at the ground speed of 0.3 m/s while the maximum RMS error was 13.01 cm at 1.2 m/s. The offset RMS error tended to increase as the ground speed increased. The target point distance, LT also affected the system performance and PID controller parameters should be adjusted on different ground speeds. Conclusions: A target angle-based PID controller plus stationary steering angle controller made it possible for the rice-transplanter to steer autonomously by following a reference line accurately and even on U-turning mode. However, as condition in paddy fields is very complicated, the system should control the ground speed that prevents it from deviating too much due to ditch and slope.