• Title/Summary/Keyword: Offset Angle

Search Result 169, Processing Time 0.02 seconds

ALGORITHM DEVELOPMENT FOR POSITION CORRECTIONS OF FIMS DATA (FIMS 관측 자료의 위치보정 알고리즘 개발)

  • Lim, Y.M.;Seon, K.I.;Min, K.;Ryu, K.S.;Park, J.W.;Kim, I.J.;Shinn, J.H.;Lee, D.H.
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.135-141
    • /
    • 2005
  • The FIMS(Far-ultraviolet IMaging Spectrograph), the main payload onboard the first Korean Science Technology SATellite, STSAT-1, has performed various astronomical observations, including the Cygnus Loop, Vela supernova remnants, LMC(Large Magellanic Cloud), since its launch on September 2003. It has been found that the attitude information provided by spacecraft bus system has the errors of more than about 10-15 arcmins due to the time offset problem and errors in attitude knowledge. We develop an algorithm for correction of position errors in FIMS data. The aspect for the FIMS data is determined by comparing the positions of observed bright stars with the Tycho-II and TD-1 catalogs. The position errors of the bright stars along the scanning (${\gamma}$) and spatial (${\delta}$) directions were considered as functions of ${\delta}$, ignoring errors in position angle. The corrected positions of the bright stars coincided very well to their Tycho-II and TD-I positions. The correction algorithm is essential for the FIMS data analysis, and is being used for the FIMS data analysis.

Measurement of Aerosols and Ice Clouds Using Ellipsometry Lidar (타원편광 라이다 개발 및 이를 이용한 에어로졸과 구름의 특성 측정)

  • Kim, Dukhyeon;Cheong, Hai Du;Volkov, Sergei N.
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • We have developed ellipsometry lidar and measured aerosol and ice-cloud characteristics. To measure a full normalized backscattering phase matrix (NBSPM) composed of nine elements, we have designed an optical system with three kinds of transmission and three kinds of reception, composed of ${\lambda}/2$ waveplate, ${\lambda}/4$ waveplate and empty optic. To find systematic optical errors, we used clean day middle-altitude (4-6km) lidar signals for which the aerosol's concentration was small and its orientation chaotic. After calibrating our lidar system, we have calculated NBSPM elements scattered from an aerosol and from an ice cloud. In the case of an aerosol, we found that the off-diagonal values $m_{12},{\ldots},m_{34}$ of the NBSPM are smaller than those for a cirrus cloud. Also, the off-diagonal values of the NBSPM from a cirrus cloud depend on atmospheric conditions.

Differential Morphological, Structural and Biological Characteristics of Cysts in Heterodera Species in Korea

  • Han, Ga Ram;Kang, Heonil;Choi, In Soo;Kim, Donggeun;Yun, Hye Young;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.628-636
    • /
    • 2020
  • Morphological (cyst shape, color, and sizes [length (L), maximum width (W), volume and "a" (L/W)]), structural (vulvar cone slope angle [VCSA], surface wrinkle [VCSW], cyst wall thickness, composition, and texture) and biological characteristics (fecundity, hatching, and emergence [number of second-stage juveniles (J2) from a cyst]) in preceding Heterodera glycines (Hg), currently-recorded H. sojae (Hs) and H. trifolii (Ht) were examined by microscopy. Cysts were lemon-shaped, indicating the genus is Heterodera except for Hs that formed frequently globular cysts with significantly flatter VCSA (102.2°) with smooth VCSW than Hg (50.6°) and Ht (82.0°), but not genus Globodera because of the presence of vulvar cone in Hs. Ht was significantly larger in all morphological characteristics than Hg and Hs, suggesting Ht may be diagnosed differentially by cyst sizes and also host plant preferences. Hs showed smaller "a" value with more globular shape and stronger structures with more thickened and strengthened collagen-like texture of cyst wall than Hg and Ht. This suggests Hs may be diagnosed differently by structural characteristics from the others, especially Hg with similar cyst sizes. There were no significant differences in emergence (inoculum potential) among cyst nematodes due to the offset of fecundity and hatching rate; however, the inoculum potential of Hs may be not so persistent as Hg and Ht in fields because of its lower fecundity and higher hatching rate (causing rapid inoculum loss) than the others. These characteristics of cysts provide information useful for simple and differential diagnoses and reliable management of cyst nematodes.

Radiation measurement and imaging using 3D position sensitive pixelated CZT detector

  • Kim, Younghak;Lee, Taewoong;Lee, Wonho
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1417-1427
    • /
    • 2019
  • In this study, we evaluated the performance of a commercial pixelated cadmium zinc telluride (CZT) detector for spectroscopy and identified its feasibility as a Compton camera for radiation monitoring in a nuclear power plant. The detection system consisted of a $20mm{\times}20mm{\times}5mm$ CZT crystal with $8{\times}8$ pixelated anodes and a common cathode, in addition to an application specific integrated circuit. The performance of the various radioisotopes $^{57}Co$, $^{133}Ba$, $^{22}Na$, and $^{137}Cs$ was evaluated. In general, the amplitude of the induced signal in a CZT crystal depends on the interaction position and material non-uniformity. To minimize this dependency, a drift time correction was applied. The depth of each interaction was calculated by the drift time and the positional dependency of the signal amplitude was corrected based on the depth information. After the correction, the Compton regions of each spectrum were reduced, and energy resolutions of 122 keV, 356 keV, 511 keV, and 662 keV peaks were improved from 13.59%, 9.56%, 6.08%, and 5%-4.61%, 2.94%, 2.08%, and 2.2%, respectively. For the Compton imaging, simulations and experiments using one $^{137}Cs$ source with various angular positions and two $^{137}Cs$ sources were performed. Individual and multiple sources of $^{133}Ba$, $^{22}Na$, and $^{137}Cs$ were also measured. The images were successfully reconstructed by weighted list-mode maximum likelihood expectation maximization method. The angular resolutions and intrinsic efficiency of the $^{137}Cs$ experiments were approximately $7^{\circ}-9^{\circ}$ and $5{\times}10^{-4}-7{\times}10^{-4}$, respectively. The distortions of the source distribution were proportional to the offset angle.

Strut Support with Tricortical Iliac Allografts in Unstable Proximal Humerus Fractures: Surgical Indication and New Definition of Poor Medial Column Support

  • Lee, Seung-Jin;Hyun, Yoon-Suk;Baek, Seung-Ha
    • Clinics in Shoulder and Elbow
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Background: The execution of fibular allograft augmentation in unstable proximal humerus fractures (PHFs) was technically demanding. In this study, the authors evaluated the clinical and radiographic outcomes after tricortical iliac allograft (TIA) augmentation in PHFs. Methods: We retrospectively assessed 38 PHF patients treated with locking-plate fixation and TIA augmentation. Insertion of a TIA was indicated when an unstable PHF showed a large cavitary defect and poor medial column support after open reduction, regardless of the presence of medial cortical comminution in preoperative images. Radiographic imaging parameters (humeral head height, HHH; humeral neck-shaft angle, HNSA; head mediolateral offset, HMLO; and status of the union), Constant score, and range of motion were evaluated. Patients were grouped according to whether the medial column support after open reduction was poor or not (groups A and B, respectively); clinical outcomes were compared for all parameters. Results: All fractures healed radiologically (average duration to complete union, 5.8 months). At final evaluation, the average Constant score was 73 points and the mean active forward flexion was $148^{\circ}$. Based on the Paavolainen assessment method, 33 patients had good results and 5 patients showed fair results. The mean loss of reduction was 1.32 mm in HHH and 5.02% in HMLO. None of the parameters evaluated showed a statistically significant difference between the two groups (poor and not poor medial column support). Conclusions: In unstable PHFs, TIA augmentation can provide good clinical and radiological results when there are poor medial column support and a large cavitary defect after open reduction.

Interference Analysis Between LEO Satellites for X-band Downlink (저궤도 위성 간 X-대역 하향링크에서의 간섭 영향성 분석)

  • Choo, Moogoong;Hwang, Inyoung;Bae, Minji;Seo, Inho;Ryu, Youngjae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.489-496
    • /
    • 2021
  • The X-band frequencies for transmitting the data from earth observation satellites are limited, so a number of satellites share the frequency bands. In order for multiple satellites to utilize same or adjacent frequency bands, International Telecommunication Union - Radiocommunication (ITU-R) limits power flux density (PFD), which overcomes the interferences among multiple satellites. However, even under the regulation, the interference effect needs to be analyzed when multiple satellites are connected to communicate with multiple ground stations (GSs) located close to each other. In this paper, the interference effect is analyzed based on signal to interference plus noise ratio (SINR) when two low earth orbit (LEO) satellites operating in different orbits are connected to communicate with randomly located two GSs in Korean peninsula. From the analysis results, it is confirmed that there can be interferences during 365 days operation even if the satellites meet PFD requirement, but the periods under interference effects are short and the interference can be foreseen.

Optimization of Optical Coupling Properties of Active-Passive Butt Joint Structure in InP-Based Ridge Waveguide (InP계 리지 도파로 구조에서 활성층-수동층 버트 조인트의 광결합 효율 최적화 연구)

  • Song, Yeon Su;Myeong, Gi-Hwan;Kim, In;Yu, Joon Sang;Ryu, Sang-Wan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • Integration of active and passive waveguides is an essential component of the photonic integrated circuit and its elements. Butt joint is one of the important technologies to accomplish it with significant advantages. However, it suffers from high optical loss at the butt joint junction and need of accurate process control to align both waveguides. In this study, we used beam propagation method to simulate an integrated device composed of a laser diode and spot size converter (SSC). Two SSCs with different mode properties were combined with laser waveguide and optical coupling efficiency was simulated. The SSC with larger near field mode showed lower coupling efficiency, however its far field pattern was narrower and more symmetric. Tapered passive waveguide was utilized for enhancing the coupling efficiency and tolerance of waveguide offset at the butt joint without degrading the far field pattern. With this technique, high optical coupling efficiency of 89.6% with narrow far field divergence angle of 16°×16° was obtained.

Analysis of Tilting Pad Journal Bearing Characteristics and Rotordynamics for Centrifugal Compressors Using Multiphysics Software (Multiphysics Software를 활용한 원심 압축기용 틸팅 패드 저널 베어링 특성과 회전체 동역학 분석)

  • Soyeon Moon;Jongwan Yun;Sangshin Park
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.268-272
    • /
    • 2023
  • This study explores the characteristics of tilting pad journal bearings used in the high-speed rotating shaft systems of centrifugal compressors. A centrifugal compressor is a high-speed rotating machine that is widely used to compress gases or vapors employed in various industrial applications. It transfers the centrifugal force of a fast-spinning impeller to the fluid and compresses it under high pressure. Many high-speed rotating shaft systems, which require high stability, use tilting pad journal bearings. The characteristics of these bearings can vary depending on several properties, and identifying the appropriate characteristics is essential to optimize the design on a case-to-case basis. In this study, the authors perform a time-dependent analysis of the properties of tilting pad journal bearings and the rotordynamics of the rotating shaft system using COMSOL Multiphysics software. Specifically, the authors analyze the characteristics of the tilting pad journal bearings by performing a parametric sweep using parameters such as pad clearance, maximum tilting angle, preload, number of pads, and pad pivot offset. The authors then use the results of the bearing-characteristics analysis to evaluate the vibration of the rotating shaft and verify its operation within a desirable range. The understanding gained from this study will allow us to determine the optimal properties of these bearings and the limiting operational speed using COMSOL Multiphysics software.

Study on GNSS Constellation Combination to Improve the Current and Future Multi-GNSS Navigation Performance

  • Seok, Hyojeong;Yoon, Donghwan;Lim, Cheol Soon;Park, Byungwoon;Seo, Seung-Woo;Park, Jun-Pyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.2
    • /
    • pp.43-55
    • /
    • 2015
  • In the case of satellite navigation positioning, the shielding of satellite signals is determined by the environment of the region at which a user is located, and the navigation performance is determined accordingly. The accuracy of user position determination varies depending on the dilution of precision (DOP) which is a measuring index for the geometric characteristics of visible satellites; and if the minimum visible satellites are not secured, position determination is impossible. Currently, the GLObal NAvigation Satellite system (GLONASS) of Russia is used to supplement the navigation performance of the Global Positioning System (GPS) in regions where GPS cannot be used. In addition, the European Satellite Navigation System (Galileo) of the European Union, the Chinese Satellite Navigation System (BeiDou) of China, the Quasi-Zenith Satellite System (QZSS) of Japan, and the Indian Regional Navigation Satellite System (IRNSS) of India are aimed to achieve the full operational capability (FOC) operation of the navigation system. Thus, the number of satellites available for navigation would rapidly increase, particularly in the Asian region; and when integrated navigation is performed, the improvement of navigation performance is expected to be much larger than that in other regions. To secure a stable and prompt position solution, GPS-GLONASS integrated navigation is generally performed at present. However, as available satellite navigation systems have been diversified, finding the minimum satellite constellation combination to obtain the best navigation performance has recently become an issue. For this purpose, it is necessary to examine and predict the navigation performance that could be obtained by the addition of the third satellite navigation system in addition to GPS-GLONASS. In this study, the current status of the integrated navigation performance for various satellite constellation combinations was analyzed based on 2014, and the navigation performance in 2020 was predicted based on the FOC plan of the satellite navigation system for each country. For this prediction, the orbital elements and nominal almanac data of satellite navigation systems that can be observed in the Korean Peninsula were organized, and the minimum elevation angle expecting signal shielding was established based on Matlab and the performance was predicted in terms of DOP. In the case of integrated navigation, a time offset determination algorithm needs to be considered in order to estimate the clock error between navigation systems, and it was analyzed using two kinds of methods: a satellite navigation message based estimation method and a receiver based method where a user directly performs estimation. This simulation is expected to be used as an index for the establishment of the minimum satellite constellation for obtaining the best navigation performance.

Development of a Measurement Data Algorithm of Deep Space Network for Korea Pathfinder Lunar Orbiter mission (달 탐사 시험용 궤도선을 위한 심우주 추적망의 관측값 구현 알고리즘 개발)

  • Kim, Hyun-Jeong;Park, Sang-Young;Kim, Min-Sik;Kim, Youngkwang;Lee, Eunji
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.746-756
    • /
    • 2017
  • An algorithm is developed to generate measurement data of deep space network for Korea Pathfinder Lunar Orbiter (KPLO) mission. The algorithm can provide corrected measurement data for the Orbit Determination (OD) module in deep space. This study describes how to generate the computed data such as range, Doppler, azimuth angle and elevation angle. The geometric data were obtained by General Mission Analysis Tool (GMAT) simulation and the corrected data were calculated with measurement models. Therefore, the result of total delay includes effects of tropospheric delay, ionospheric delay, charged particle delay, antenna offset delay, and tropospheric refraction delay. The computed measurement data were validated by comparison with the results from Orbit Determination ToolBoX (ODTBX).