• 제목/요약/키워드: Offline Processing

검색결과 96건 처리시간 0.021초

위성 상태 데이터의 고속 후처리 기술 동향 (Trends of High Speed Satellite Offline Telemetry Processing)

  • 강지훈;구인회;안상일
    • 항공우주산업기술동향
    • /
    • 제8권2호
    • /
    • pp.15-23
    • /
    • 2010
  • 본 논문에서는 최근에 개발된 위성 데이터 후처리 시스템의 동향에 대해 기술 하고자 한다. 위성 데이터 후처리 시스템은 위성의 텔레메트리를 분석하고 위성의 상태를 파악하는데 사용되는 시스템으로 빠른 처리속도, 데이터 도시화, 사용의 용이성, 그리고 범용성의 요구사항을 갖는다. 본 논문에서는 이러한 요구사항을 만족시키기 위해 여러 위성 데이터 후처리 시스템이 어떻게 설계되고 구현되었는지를 살펴본다.

  • PDF

영상왜곡 보정 알고리즘 설계 (Design of Image Distortion Restoration Algorithm)

  • 김병환;최영규
    • 대한안전경영과학회지
    • /
    • 제15권4호
    • /
    • pp.317-321
    • /
    • 2013
  • Due to growth of electronics and control devices, automation and situational awareness systems have been applied by automobile. Vision systems with the introduction of unmanned system were being actively developed. In this paper, the distortion in the 7-inch LCD screen for the treatment process are divided into Online and Offline processing. Offline processing based on the image signal processing and for generating LUT Online to Offline generated by processing the distortion is applied to the LUT. LUT is applied to distort the image processing in real time, so that distortion correction is made for the purpose of setting.

A Computational Intelligence Based Online Data Imputation Method: An Application For Banking

  • Nishanth, Kancherla Jonah;Ravi, Vadlamani
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.633-650
    • /
    • 2013
  • All the imputation techniques proposed so far in literature for data imputation are offline techniques as they require a number of iterations to learn the characteristics of data during training and they also consume a lot of computational time. Hence, these techniques are not suitable for applications that require the imputation to be performed on demand and near real-time. The paper proposes a computational intelligence based architecture for online data imputation and extended versions of an existing offline data imputation method as well. The proposed online imputation technique has 2 stages. In stage 1, Evolving Clustering Method (ECM) is used to replace the missing values with cluster centers, as part of the local learning strategy. Stage 2 refines the resultant approximate values using a General Regression Neural Network (GRNN) as part of the global approximation strategy. We also propose extended versions of an existing offline imputation technique. The offline imputation techniques employ K-Means or K-Medoids and Multi Layer Perceptron (MLP)or GRNN in Stage-1and Stage-2respectively. Several experiments were conducted on 8benchmark datasets and 4 bank related datasets to assess the effectiveness of the proposed online and offline imputation techniques. In terms of Mean Absolute Percentage Error (MAPE), the results indicate that the difference between the proposed best offline imputation method viz., K-Medoids+GRNN and the proposed online imputation method viz., ECM+GRNN is statistically insignificant at a 1% level of significance. Consequently, the proposed online technique, being less expensive and faster, can be employed for imputation instead of the existing and proposed offline imputation techniques. This is the significant outcome of the study. Furthermore, GRNN in stage-2 uniformly reduced MAPE values in both offline and online imputation methods on all datasets.

Optimal Packet Scheduling Algorithms for Token-Bucket Based Rate Control

  • Mehta Neerav Bipin;Karandikar Abhay
    • Journal of Communications and Networks
    • /
    • 제7권1호
    • /
    • pp.65-75
    • /
    • 2005
  • In this paper, we consider a scenario in which the source has been offered QoS guarantees subject to token-bucket regulation. The rate of the source should be controlled such that it conforms to the token-bucket regulation, and also the distortion obtained is the minimum. We have developed an optimal scheduling algorithm for offline (like pre-recorded video) sources with convex distortion function and which can not tolerate any delay. This optimal offline algorithm has been extended for the real-time online source by predicting the number of packets that the source may send in future. The performance of the online scheduler is not substantially degraded as compared to that of the optimal offline scheduler. A sub-optimal offline algorithm has also been developed to reduce the computational complexity and it is shown to perform very well. We later consider the case where the source can tolerate a fixed amount of delay and derive optimal offline algorithm for such traffic source.

O2O(Online to Offline) 비즈니즈 모델의 서비스 동향 연구 (A Study on IT Service Trends of O2O(Online to Offline) Business Model)

  • 김한준;최은미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.198-201
    • /
    • 2018
  • 사이버 공간과 물리적 공간의 서비스를 접목하는 O2O(Online to Offline) 비즈니스 모델은 산업과 일상 생활에서 다양한 서비스들을 제공하고 있다. 이러한 세계적인 트랜드인 O2O 서비스의 국내 외 동향을 살펴보고 4가지 유형별로 서비스의 특성을 살펴보고 분류하였다. 또한, 일반적인 세계 시장과는 흐름과 다소 다른 양상을 띠고 있는 국내 O2O 서비스 시장에서 활성화 되고 있는 신 비즈니스 모델인 O4O(Online for Outline)를 소개하며, O4O 서비스의 기술적인 전략인 디지털 트윈(Digital Twin)의 접목을 제안한다.

Offline-to-Online Service and Big Data Analysis for End-to-end Freight Management System

  • Selvaraj, Suganya;Kim, Hanjun;Choi, Eunmi
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.377-393
    • /
    • 2020
  • Freight management systems require a new business model for rapid decision making to improve their business processes by dynamically analyzing the previous experience data. Moreover, the amount of data generated by daily business activities to be analyzed for making better decisions is enormous. Online-to-offline or offline-to-online (O2O) is an electronic commerce (e-commerce) model used to combine the online and physical services. Data analysis is usually performed offline. In the present paper, to extend its benefits to online and to efficiently apply the big data analysis to the freight management system, we suggested a system architecture based on O2O services. We analyzed and extracted the useful knowledge from the real-time freight data for the period 2014-2017 aiming at further business development. The proposed system was deemed useful for truck management companies as it allowed dynamically obtaining the big data analysis results based on O2O services, which were used to optimize logistic freight, improve customer services, predict customer expectation, reduce costs and overhead by improving profit margins, and perform load balancing.

한국 떡류 영업자의 영업 특성 및 온·오프라인 식품위생교육 비교 분석에 관한 연구 (A Study on the Business Characteristics, and Online/Offline Food Hygiene Education Comparative Analysis of Rice Cake Producer in Korea)

  • 이형국;김지연
    • 한국식품위생안전성학회지
    • /
    • 제30권4호
    • /
    • pp.343-349
    • /
    • 2015
  • 본 연구는 식품위생교육을 이수하는 국내 떡류 영업자를 대상으로 설문조사를 통하여 우리나라 떡류 영업의 특성을 파악하고 온라인 및 오프라인 식품위생교육에 대한 인식도의 차이를 비교 분석하고자 하였다. 떡류 영업자 연령대는 50대(40.1%), 학력은 고졸(52.6%), 종사기간은 10년~20년(34.3%)이 가장 높은 것으로 나타났고, 영업 및 영업장 관련 종사인원은 2명(79.5%), 면적은 $99.17m^2$ 이하(92.0%), 점유 형태로 임차 사업장(60.2%), 사업장에 대한 월 임차 금액 100만 원 이하(54.8%)를 대부분 지불하고 있으며, 영업장 안전사고 발생은 3년간 228건(연평균 2.4%), 제조 가공 품목수는 20가지 이하(86.7%)로 분석되었다. 식품위생교육 채널별 인식도에서 영업자는 여성, 연령대가 낮을수록, 학력이 높을수록 온라인 교육을 선호하였고, 온라인 교육 선택 이유로 '시간적 경제적 편리성'(73.7%)가 나타났으며 온라인 이수자는 위생교육이 영업에 더 도움 된다고 인식하였다. 매출액은 온 오프라인 이수자 간의 유의적 차이가 없었고 위생적 관리에 대해서는 온라인 이수자가 오프라인 이수자보다 7.4% 높게 잘 하고 있다고 답변하였다. 이전의 교육기관의 교육 대비 떡류 영업자만을 위한 교육은 온 오프라인 이수자 모두 60.7% 정도 더 만족하는 것으로 분석되었다.

Data anomaly detection and Data fusion based on Incremental Principal Component Analysis in Fog Computing

  • Yu, Xue-Yong;Guo, Xin-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.3989-4006
    • /
    • 2020
  • The intelligent agriculture monitoring is based on the perception and analysis of environmental data, which enables the monitoring of the production environment and the control of environmental regulation equipment. As the scale of the application continues to expand, a large amount of data will be generated from the perception layer and uploaded to the cloud service, which will bring challenges of insufficient bandwidth and processing capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in this paper, which combines offline and real-time analysis to enable real-time data processing on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm based on the incremental principal component analysis, which can achieve data dimensionality reduction and update of principal components. We also introduce the concept of Squared Prediction Error (SPE) value and realize the abnormal detection of data through the combination of SPE value and data fusion algorithm. To ensure the accuracy and effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which enables the principal component to be updated on demand when data anomalies are found. In addition, this strategy can significantly reduce resource consumption growth due to the data analysis architectures. Practical datasets-based simulations have confirmed that the proposed algorithm can perform data fusion and exception processing in real-time on resource-constrained devices; Our model update strategy can reduce the overall system resource consumption while ensuring the accuracy of the algorithm.

전시공간 내 최적의 O2O 서비스 배치를 위한 기계학습 기반평가 모델 (Evaluation Model Based on Machine Learning for Optimal O2O Services Layout(Placement) in Exhibition-space)

  • 이준엽;김용혁
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제6권3호
    • /
    • pp.291-300
    • /
    • 2016
  • 스마트 디바이스와 사물 인터넷의 등장은 온라인과 오프라인의 경계를 허무는 O2O 서비스의 등장으로 이어졌다. 이는 오프라인 시장에 온라인 서비스의 강점이 덧붙여지면서 오프라인 공간이 디지털화가 됨을 의미하며, 오프라인 산업의 판도를 바꾸고 있다. 이러한 오프라인 시장의 변화 양상과는 다르게 전시 산업은 오프라인 산업에서 꾸준한 성장세를 보이고 있으나, 전시 산업 또한 O2O 서비스와의 접목으로 새로운 부가가치를 창출이 가능한 것으로 보았다. 본 논문은 코엑스에서 열린 '2015 서울 디자인 페스티벌'에서 20명을 대상으로 설문을 진행하였다. 설문은 공간 구조에 대한 분석 용도 및 기계학습을 위한 데이터 세트를 생성하는데 사용되었다. 본 논문은 기존의 공간 구조에 대한 분석연구가 가진 문제점을 파악하여 공간 구조에 대한 새로운 분석 방법을 제안하였다. 또한 생성된 데이터 세트를 기반으로 기계학습을 진행하여 전시 공간 내 O2O 서비스 배치를 위한 평가 모델을 제안한다.

Finite element-based software-in-the-loop for offline post-processing and real-time simulations

  • Oveisi, Atta;Sukhairi, T. Arriessa;Nestorovic, Tamara
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.643-658
    • /
    • 2018
  • In this paper, we introduce a new framework for running the finite element (FE) packages inside an online Loop together with MATLAB. Contrary to the Hardware-in-the-Loop techniques (HiL), in the proposed Software-in-the-Loop framework (SiL), the FE package represents a simulation platform replicating the real system which can be out of access due to several strategic reasons, e.g., costs and accessibility. Practically, SiL for sophisticated structural design and multi-physical simulations provides a platform for preliminary tests before prototyping and mass production. This feature may reduce the new product's costs significantly and may add several flexibilities in implementing different instruments with the goal of shortlisting the most cost-effective ones before moving to real-time experiments for the civil and mechanical systems. The proposed SiL interconnection is not limited to ABAQUS as long as the host FE package is capable of executing user-defined commands in FORTRAN language. The focal point of this research is on using the compiled FORTRAN subroutine as a messenger between ABAQUS/CAE kernel and MATLAB Engine. In order to show the generality of the proposed scheme, the limitations of the available SiL schemes in the literature are addressed in this paper. Additionally, all technical details for establishing the connection between FEM and MATLAB are provided for the interested reader. Finally, two numerical sub-problems are defined for offline and online post-processing, i.e., offline optimization and closed-loop system performance analysis in control theory.