• Title/Summary/Keyword: Off-current

Search Result 2,261, Processing Time 0.027 seconds

Ultraviolet and visible light detection characteristics of amorphous indium gallium zinc oxide thin film transistor for photodetector applications

  • Chang, Seong-Pil;Ju, Byeong-Kwon
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.61-64
    • /
    • 2012
  • The ultraviolet and visible light responsive properties of the amorphous indium gallium zinc oxide thin film transistor have been investigated. Amorphous indium gallium zinc oxide (a-IGZO) thin film transistor operate in the enhancement mode with saturation mobility of $6.99cm^2/Vs$, threshold voltage of 13.5 V, subthreshold slope of 1.58 V/dec and an on/off current ratio of $2.45{\times}10^8$. The transistor was subsequently characterized in respect of visible light and UV illuminations in order to investigate its potential for possible use as a detector. The performance of the transistor is indicates a high-photosensitivity in the off-state with a ratio of photocurrent to dark current of $5.74{\times}10^2$. The obtained results reveal that the amorphous indium gallium zinc oxide thin film transistor can be used to fabricate UV photodetector operating in the 366 nm.

A Novel Resonant Converter for driving Switched Reluctance Motor (스위치드 릴럭턴스 전동기 구동을 위한 새로운 공진형 컨버터)

  • 김정성;김현중;양이우;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.413-417
    • /
    • 1998
  • In order to obtain better performance for a SRM(switched reluctance motor) drive, the commutation from one phase to another must be as fast as possible. In this paper a novel converter for SRM drive is proposed, which can accelerate the turn-off and turn-on time by using two capacitors to form a resonant circuit with the motor inductance. Two capacitors recover rapidly stored energy in the off going phase and establish rapidly the current rising in the on going phase. As a result, the current tail can be shortened and the dwell angle in the positive torque region can be extended. And comparing with the asymmetric converter, this converter has higher energy availability in energy conversion process and less number of switches.

  • PDF

Analysis, Design and Implementation of an Improved ZVZCS-PWM Forward converter

  • Soltanzadeh, Karim;Dehghani, Majid;Khalilian, Hosein
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.197-204
    • /
    • 2014
  • In this paper an Improved Zero Voltage Zero Current Pulse Width Modulation Forward converter which employs a simple resonance snubber circuit is introduced. A simple snubber circuit consists of a capacitor, an inductor and two diodes. In proposed converter, switch Q1 operates at ZCS turn-on, and ZVS turn-off conditions and all-passive semiconductor devices operate at ZVZCS turn-on and turn-off state. The proposed converter is analyzed and various operating modes of the ZVZCS-PWM forward converter are discussed. Analysis and design considerations are presented and the prototype experimental results of a 100w (40 V/2.5A) proposed converter operating at 30 KHz switching frequency confirm the validity of theoretical analysis.

Improved Electrical Properties of Indium Gallium Zinc Oxide Thin-film Transistors by AZO/Ag/AZO Multilayer Transparent Electrode

  • No, Yeong-Su;Yang, Jeong-Do;Park, Dong-Hui;Wi, Chang-Hwan;Jo, Se-Hui;Kim, Tae-Hwan;Choe, Won-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.443-443
    • /
    • 2012
  • We fabricated a-IGZO TFT with AZO/Ag/AZO transparent multilayer source/drain contacts by rf magnetron sputtering. Enhanced electrical device performance of a-IGZO TFT with AZO/Ag/AZO multilayer S/D electrodes (W/L = = 400/50 mm) was achieved with a subs-threshold swing of 3.78 V/dec, a minimum off-current of 10-12 A, a threshold voltage of 1.80 V, a field effect mobility of 10.86 cm2/Vs, and an on/off ration of 9x109. It demonstrated the potential application of the AZO/Ag/AZO film as a promising S/D contact material for the fabrication of the high performance TFTs.

  • PDF

A Study on New Inverse Pinch Switch for High Power Transfer (High Power 전달을 위한 새로운 Inverse Pinch Switch에 관한 연구)

  • Cho, Kook-Hee;Kim, Young-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.120-125
    • /
    • 2006
  • In contrast to the conventional trigatron switch in which the currents are constricted by the z-pinch mechanical the new switch operates in an inverse pinch geometry formed by a pair of spiral electrodes in a sealed-off type. Inverse pinch switch greatly reduces hot spot formations and protects the electrode surfaces. The switch can be initiated with an electrical trigger electrode. Advantages of the new switch over the conventional switches are longer useful life, high current capability and lower inductance due to the dispersed and moving current sheet. These improved characteristics may make the inverse pinch switch suitable for pulse power systems.

A Study on the Cut Off Characteristics and Graphite Analysis of Residual Current Protective Devices for Low Voltage (저압용 누전차단기의 차단특성 및 그라파이트 분석에 관한 연구)

  • 최충석;이경섭;정재희;박수홍;김병수;이덕출
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.49-54
    • /
    • 1999
  • In this paper. we studied cut off characteristics and fire hazard of residual current protective devices(RCD or ELB) for low voltage. The operative time of RCD with grounding resistance was analyzed by using RCD operating tester. The surface structure and composition of insulator were analyzed by using scanning electron microscope(SEM) and energy dispersive x-ray spectroscopy(EDX). The surface of phenol resin showed network structure and void. The spectra shown in EDX analysis are composed not only of the corresponding elements but also of several new spectra, as CK. OK$\alpha$. MgK, SiK. and CaK, which were absent in original material.

  • PDF

Electrothermal Analysis for Super-Junction TMOSFET with Temperature Sensor

  • Lho, Young Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.951-960
    • /
    • 2015
  • For a conventional power metal-oxide-semiconductor field-effect transistor (MOSFET), there is a trade-off between specific on-state resistance and breakdown voltage. To overcome this trade-off, a super-junction trench MOSFET (TMOSFET) structure is suggested; within this structure, the ability to sense the temperature distribution of the TMOSFET is very important since heat is generated in the junction area, thus affecting its reliability. Generally, there are two types of temperature-sensing structures-diode and resistive. In this paper, a diode-type temperature-sensing structure for a TMOSFET is designed for a brushless direct current motor with on-resistance of $96m{\Omega}{\cdot}mm^2$. The temperature distribution for an ultra-low on-resistance power MOSFET has been analyzed for various bonding schemes. The multi-bonding and stripe bonding cases show a maximum temperature that is lower than that for the single-bonding case. It is shown that the metal resistance at the source area is non-negligible and should therefore be considered depending on the application for current driving capability.

Design and Fabrication of Buried Channel Polycrystalline Silicon Thin Film Transistor (Buried Channel 다결정 실리콘 박막 트랜지스터의 설계 및 제작)

  • 박철민;강지훈;유준석;한민구
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.53-58
    • /
    • 1998
  • A buried channel poly-Si TFT (BCTFT) for application of high performance integrated circuits has been proposed and fabricated. BCTFT has unique features, such as the moderately-doped buried channel and counter-doped body region for conductivity modulation, and the fourth terminal entitled back bias for preventing kink effect. The n-type and p-type BCTFT exhibits superior performance to conventional poly-Si TFT in ON-current and field effect mobility due to moderate doping at the buried channel. The OFF-state leakage current is not increased because the carrier drift is suppressed by the p-n junction depletion between the moderately-doped buried channel and the counter-doped body region.

  • PDF

The modified HSINFET using the trenched hybrid injector (트렌치 구조의 Hybrid Schottky 인젝터를 갖는 SINFET)

  • 김재형;김한수;한민구;최연익
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.230-234
    • /
    • 1996
  • A new trenched Hybrid Schottky INjection Field Effect Transistor (HSINFET) is proposed and verified by 2-D semiconductor device simulation. The feature of the proposed structure is that the hybrid Schottky injector is implemented at the trench sidewall and p-n junction injector at the upper sidewall and bottom of a trench. Two-dimensional simulation has been performed to compare the new HSINFET with the SINFET, conventional HSINFET and lateral insulated gate bipolar transistor(LIGBT). The numerical results shows that the current handling capability of the proposed HSINFET is significantly increased without sacrificing turn-off characteristics. The proposed HSINFET exhibits higher latch-up current density and much faster switching speed than the lateral IGBT. The forward voltage drop of the proposed HSINFET is 0.4 V lower than that of the conventional HSINFET and the turn-off time of the trenched HSINFET is much smaller than that of LIGBT.

  • PDF

Optimization and Characterization of Gate Electrode Dependent Flicker Noise in Silicon Nanowire Transistors

  • Anandan, P.;Mohankumar, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1343-1348
    • /
    • 2014
  • The low frequency noise in Silicon Nanowire Field Effect Transistors is analyzed by characterizing the gate electrode dependence on various geometrical parameters. It shows that gate electrodes have a strong impact in the flicker noise of Silicon Nanowire Field effect transistors. Optimization of gate electrode was done by comparing different performance metrics such a DIBL, SS, $I_{on}/I_{off}$ and fringing capacitance using TCAD simulations. Molybdenum based gate electrode showed significant improvement in terms of high drive current, Low DIBL and high $I_{on}/I_{off}$. The noise power sepctral density is reduced by characterizing the device at higher frequencies. Silicon Nanowire with Si3N4 spacer decreases the drain current spectral density which interms reduces the fringing fields there by decreasing the flicker noise.