• Title/Summary/Keyword: Off/on switch

Search Result 415, Processing Time 0.026 seconds

A Design of Dual-Polarized Microstrip Antenna Using the Active Devices (능동소자를 이용한 이중편파 특성의 마이크로스트립 안테나 설계)

  • 임규재;윤현보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.573-581
    • /
    • 1994
  • A microstrip antenna having a dual polarization and a smaller size than feed horn polarizer of F.R.R.S(Faraday Rotation Rotary Switch) is designed, in which GaAs MESFET switches are inserted for selective reception of RHCP or LHCP. For an accurate analysis of the resonance frequency, input impedance and radiation pattern of the circularly polarized microstrip antenna, finite difference time domain (FDTD) method is used. When the GaAs MESFET switch in the feeder is ON-stats, the truncated patch antenna has a gain of about 16.6dB including amplifier gain, while the switch is OFF-state, this has a isolation level of -24dB.

  • PDF

A New Controllable Active Clamp Algorithm for Switching Loss Reduction in a Module Integrated Converter System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.465-471
    • /
    • 2014
  • This paper proposes a new switching algorithm for an active clamp snubber to improve the efficiency of a module integrated converter system. This system uses an active clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Simulation and experimental results are presented to show the validity of the proposed new active clamp control algorithm.

Novel Zero-Current-Transition PWM DC/DC Converters (새로운 Zero-Current-Transition PWM DC/DC 컨버터)

  • 이민광;이동윤;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • In this paper, a novel Zero-Current-Transition (ZCT) technique, which provides Zero-Current-Switching (ZCS) turn-off of the main switch, the main diode and the auxiliary switch, is presented. The proposed auxiliary circuit consists of minimum elements only one auxiliary switch, resonant inductor and resonant capacitor. Also the reduced di/dt, which is obtained by resonant inductor, helps soft turn-on of the main switch. Besides, to eliminate the additional conduction loss and current stress on main switch, a topological variation was performed. The theoretical analysis and the operation principle of the new ZCT techniques are described in detail with a boost converter as an example. To verify the validity of the proposed ZCT techniques, the simulation and the experiment were performed under 1kW output power and 100kHz switching frequency.

  • PDF

A study of nonlinear interactions in all-optical phase-shift switch using higher-order soliton pulse with femtosecond width (극초단 고차솔리톤펄스를 이용한 전광위상천이스위치에서 고차 비선형상호작용에 관한 연구)

  • 윤기홍;송재원
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.245-250
    • /
    • 2002
  • We study numerically the temporal evolutions of two orthogonally polarized pulses with width less than 100fsec in all-optical phase-shift switches. We analyze the complicated interplay between a soliton pulse and a higher-order soliton pulse, including the self-and the cross-Raman scattering and the walk-off effect. We also investigate the influence of these interactions on switching performance, including pulse-shape, phase-shift distribution, and contrast ratio. In particular we show that an optical fiber with a typical birefringence (Δn : 2.4$\times$10$^{-5}$ ) can be used with good switching performance in such all-optical switches.

Optimal design and performance test of thermally controlled superconducting switch (열 제어형 초전도 스위치의 최적화 설계 및 특성 평가)

  • 고락길;배준한;권영길;조영식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.207-210
    • /
    • 2002
  • We had designed thermally controlled superconducting switches using a general nonlinear optimized algorithm with constraints and tested its performance. Objective function was to minimize the total volume of the superconducting switch. And constraints were to have designed resistance in normal status and temperature. In order to compare performance of the optimized superconducting switch, we made another one which had geometrically different parameters but had same structure and resistance value when the superconductor part is normal status by heater. Objective function converged very rapidly. As result, volume of the adiabatic part and total volume of the switch were reduced to more than 70% and 30% respectively. Also, even if same heater power was supplied with NiCr wire heater, the optimized superconducting switch had very fast On-OFF switching performance comparing with unoptimized switch.

  • PDF

See-saw Type RF MEMS Switch with Narrow Gap Vertical Comb

  • Kang, Sung-Chan;Moon, Sung-Soo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.177-182
    • /
    • 2007
  • This paper presents the see-saw type RF MEMS switch based on a single crystalline silicon structure with narrow gap vertical comb. Low actuation voltage and high isolation are key features to be solved in electrostatic RF MEMS switch design. Since these parameters in conventional parallel plate RF MEMS switch designs are in trade-off relationship, both requirements cannot be met simultaneously. In the vertical comb design, however, the actuation voltage is independent of the vertical separation distance between the contact electrodes. Therefore, the large separation gap between contact electrodes is implemented to achieve high isolation. We have designed and fabricated RF MEMS switch which has 46dB isolation at 5GHz, 0.9dB insertion loss at 5GHz and 40V actuation voltage.

Analysis of Surface Reflection All-Optical Switches using InGaAs/InAlAs Multiple Quantum Wells (InGaAs/InAlAs 다중 양자우물을 이용한 표면 반사형 전광 스위치의 해석)

  • Choi, Yong-Ho;Kim, Kyung-Whan;Choi, Woo-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.9
    • /
    • pp.23-30
    • /
    • 2000
  • The performance of two types of surface reflecting all-optical switches with InGaAs/InAlAs multiple quantum wells are investigated. The absorption spectra and the refractive index changes of the quantum well are calculated for various pump and probe beam intensities and device conditions. From theses results, on ON/OFF ratio and switching speed of the two switches are compared. It is shown that the switch using DBR has higher ON/OFF ratio and higher switching speed than the switch without DBR.

  • PDF

Studies on the Pull-up MEMS Switch for the Lower Actuation Voltage and High Speed using Double Electrode

  • Lee, Seong-Dae;Jun, Byoung-Chol;Baek, Tae-Jong;Kim, Soom-Koo;Kim, Sam-Dong;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.929-932
    • /
    • 2005
  • We report a pull-up type RF MEMS switch using double electrode without elastic deformation of the cantilever involved in the actuation. At a voltage of 4.5 V, reliable actuations are achieved such that the movable lower contact pad is pulled up by the electrostatic force to make contact with the upper pad. At a frequency of 50 GHz, an insertion loss of 0.7 dB and an isolation of 50.7 dB are obtained from the switch. The measured transient times for switch-on and switch-off are 120 and 80 us, respectively.

  • PDF

A Study on the Controllable Snubber for Switching Loss Reduction in Interleaved Fly-Back Converter (인터리브드 플라이 백 컨버터의 스위칭 손실 감소를 위한 제어형 스너버에 관한 연구)

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.57-64
    • /
    • 2015
  • This paper proposes a new switching algorithm for an controllable clamp snubber to improve the efficiency of a fly-back converter system. This system uses an controllable clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Experimental results are presented to show the validity of the proposed controllable clamp control algorithm.

A Study on Switching Characteristics of Active Clamp Type Flyback Converter with Synchronous Rectifier Driving Signals Controlling Auxiliary Switch (보조스위치가 동기정류기 구동 신호로 제어되는 능동 클램프형 플라이백 컨버터의 스위칭 특성에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • In this paper, the switching characteristics of the active clamp type flyback converter, which is deemed suitable for the miniaturization of the external power supply for home appliance, were analyzed and the process of reducing the switching loss was explained. The active clamp type flyback converter operating in the DCM has confirmed that the surge voltage of the main switch does not occur and the turn-off / on loss of the switch do not occur in principle. Also, in the case of the switch for synchronous rectifier, it was showed that the switch current showed half-wave rectified sinusoidal characteristic, and the switching loss was reduced. The switching characteristics of the experimental results gathered from 120 W class prototype were compared with the theoretical waveform in the steady-state and it was confirmed that the power conversion efficiency of the active clamp type flyback converter was maintained high due to the reduction of the switching loss.