• 제목/요약/키워드: Octree Generation

검색결과 22건 처리시간 0.018초

삼차원 직교 격자 생성을 위한 단면 커브를 이용한 옥트리 생성과 셀 절단 알고리듬 (Octree Generation and Clipping Algorithm using Section Curves for Three Dimensional Cartesian Grid Generation)

  • 김동훈;신하용;박세연;이일랑;권장혁;권오준
    • 한국CDE학회논문집
    • /
    • 제13권6호
    • /
    • pp.450-458
    • /
    • 2008
  • Recently, Cartesian grid approach has been popular to generate grid meshes for complex geometries in CFD (Computational Fluid Dynamics) because it is based on the non-body-fitted technique. This paper presents a method of an octree generation and boundary cell clipping using section curves for fast octree generation and elimination of redundant intersections between boundary cells and triangles from 3D triangular mesh. The proposed octree generation method uses 2D Scan-Converting line algorithm, and the clipping is done by parameterization of vertices from section curves. Experimental results provide octree generation time as well as Cut-cell clipping time of several models. The result shows that the proposed octree generation is fast and has linear relationship between grid generation time and the number of cut-cells.

삼차원 유한요소의 자동생성 (1) - 사면체 옥트리의 구성 - (Automatic Generation of 3-D Finite Element Meshes : Part(I) - Tetrahedron-Based Octree Encoding -)

  • 정융호;이건우
    • 대한기계학회논문집
    • /
    • 제18권12호
    • /
    • pp.3159-3174
    • /
    • 1994
  • A simple octree encoding algorithm based on a tetrahedron root has been developed to be used for fully automatic generation of three dimensional finite element meshes. This algorithm starts octree decomposition from a tetrahedron root node instead of a hexahedron root node so that the terminal mode has the same topology as the final tetrahedral mesh. As a result, the terminal octant can be used as a tetrahedral finite element without transforming its topology. In this part(I) of the thesis, an efficient algorithm for the tetrahedron-based octree is proposed. For this development, the following problems have been solved, : (1) an efficient data structure for storing the octree and finite elements, (2) an encoding scheme of a tetrahedral octree, (3) a neighbor finding technique for the tetrahedron-based octree.

삼차원 유한요소의 자동생성 (2) -사면체 옥트리로부터의 유한요소 생성- (Automatic Generation of 3-D Finite Element Meshes: Part(II) -Mesh Generation from Tetrahedron-based Octree-)

  • 정융호;이건우
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.647-660
    • /
    • 1995
  • Given the tetrahedron-based octree approximation of a solid as described in part(I) of this thesis, in this part(II) a systematic procedure of 'boundary moving' is developed for the fully automatic generation of 3D finite element meshes. The algorithm moves some vertices of the octants near the boundary onto the exact surface of a solid without transforming the topology of octree leaf elements. As a result, the inner octree leaf elements can be used as exact tetrahedral finite element meshes. In addition, as a quality measure of a tetrahedral element, 'shape value' is propopsed and used for the generation of better finite elements during the boundary moving process.

기하학적 Octree 격자생성법을 이용한 자동차 헤드램프 내부의 열유동 계산 (Computation of Thermal Flow for Automotive Lamp by Using Geometric Octree Method)

  • 사종엽;박종렬;강동민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.152-156
    • /
    • 2001
  • Three dimensional orthogonal grid generation is able to control effectively the grid spacing near the boundaries, but there are some difficulty to meshing complex geometry. The mesh complex geometry by orthogonal grid generation method must divide block of geometry It is required a careful skill, and long time. Its also difficulty to make unstructured mesh on complex geometry. Particularly, three dimensional geometry must have more time and effort. Recently, there have been growing interests in mesh generation of complex grometry, aslike an automobile headlamp, the heart. The method of easily meshing complex geometry is resarched to solve them. We suggest octree grid into one among these methods. As octrce grid is automaticaly adapted at the boundaries by determine the level operations to control the grid spacing near the boundaries are unnecessary. In this paper we showed throe dimensional mesh generation, and heat-flow analysis on the octree mesh.

  • PDF

Geometry-based Adaptive Octree 방법에 대한 고찰 (Analysis of Using Geometry-based Adaptive Octree Method)

  • 박종렬;사종엽
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.86-91
    • /
    • 2000
  • Automatic method for generation of mesh and three dimension natural convection flow result adapted by this method are presented in this paper. It lake long time to meshing com plex 3-D geometries, and It's difficult to clustering grid at surface boundary. Octree structure resolve this difficulty.

  • PDF

CUDA를 이용한 최대-최소 8진트리 생성 기법 (Min-Max Octree Generation Using CUDA)

  • 임종현;신병석
    • 한국게임학회 논문지
    • /
    • 제9권6호
    • /
    • pp.191-196
    • /
    • 2009
  • 볼륨 렌더링은 볼륨 데이터로부터 유용한 정보를 추출하여 시각화 하는 방법이다. 일반적으로 볼륨 렌더링에서 사용하는 데이터가 크기 때문에 실시간 처리가 가능한 수준의 빠른 렌더링을 위한 가속기법들이 중요하다. 최대-최소 8진트리는 고속 볼륨 렌더링을 위한 자료구조이지만, 볼륨데이터가 클수록 생성시간이 오래 걸리는 문제가 있다. 본 논문에서는 CUDA를 이용하여 GPU에서 최대-최소 8진트리의 생성을 가속화 하는 방법을 제안한다. 먼저 볼륨데이터에 Space Filling Curve를 적용하여 3차원의 데이터를 연속적인 1차원 배열형태로 변환한다. 이렇게 변환된 데이터로부터 최대-최소 8진트리 자료구조를 만들어 빈공간 도약기법에 적용함으로써 렌더링 속도를 향상시킬 수 있다.

  • PDF

중첩 격자계의 효율적 Hole Finding 기법 (EFFICIENT HOLE FINDING METHOD FOR OVERSET GRID SYSTEM)

  • 김병수;고성호
    • 한국전산유체공학회지
    • /
    • 제11권2호
    • /
    • pp.62-66
    • /
    • 2006
  • In this paper an automated hole-finding method for overset grids is introduced which uses recursive octree-cell division. A graphic program which enables the user to do the hole-cutting with ease is also introduced. Using this program it is found that there is an optimum combination of the level of octree division and vector calculation for the efficient and fast hole finding.

중첩 격자계의 효율적 Hole Finding 기법 (Efficient Hole Finding Method for Overset Grid System)

  • 김병수;고성호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.83-86
    • /
    • 2004
  • In this paper an automated hole-finding method for overset grids is introduced which uses recursive octree-cell division. A graphic program which enables the user to do the hole-cutting with ease is also introduced. Using this program it was found that a proper combination of the level of octree division and vector calculation should be used for efficient and fast hole finding.

  • PDF

옥트리를 이용한 황삭 가공경로생성 (Tool Path Generation for Rough Cutting Using Octree)

  • 김태주;이건우;홍성의
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.53-64
    • /
    • 1994
  • Rouge cutting process takes the major portion of machining operation using NC milling machine. Especially, most of the machining time is spent in this process when molds are machined. Therefore, an efficient algorithm for generating the tool path for rough cutting is suggested in this paper. The first step of the procedure is getting the volume to be machined by applying the Boolean operation on the finished model and the workpiece which have been modeling system. Basic principle of determining machining procedure is that a large tool should be used at the portion of the simple shape while a small tool should be used at the complex portion. This principle is realized by representing the volume to be machined by an octree, which is basically a set of hexahedrons, and matching the proper tools with the given octants. When the tools are matched with the octants, the tool path can be derived at the same time.

Adaptive mesh generation by bubble packing method

  • Kim, Jeong-Hun;Kim, Hyun-Gyu;Lee, Byung-Chai;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • 제15권1호
    • /
    • pp.135-149
    • /
    • 2003
  • The bubble packing method is implemented for adaptive mesh generation in two and three dimensions. Bubbles on the boundary of a three-dimensional domain are controlled independently of the interior bubbles in the domain, and a modified octree technique is employed to place initial bubbles in the three-dimensional zone. Numerical comparisons are made with other mesh generation techniques to demonstrate the effectiveness of the present bubble packing scheme for two- and three-dimensional domains. It is shown that this bubble packing method provides a high quality of mesh and affordable control of mesh density as well.