• Title/Summary/Keyword: Octane

Search Result 246, Processing Time 0.022 seconds

Flash Point Calculation for n-Octane+n-Decane and n-Octane+n-Dodecane by UNIFAC Group Contribution Model (UNIFAC 그룹 기여 모델에 의한 n-Octnae+n-Decane 계와 n-Octane+n-Dodecane 계의 인화점 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.86-91
    • /
    • 2015
  • The flash point is used to categorize inflammable liquids according to their relative flammability. Such a categorization is important for the safe handling, storage, and transportation of inflammable liquids. The flash point temperature of two binary liquid mixtures(n-octane+n-decane and n-octane+n-dodecane) has been measured for the entire concentration range using Seta-flash closed cup tester based on the ASTM D3278 method. The closed cup flash point temperature was estimated using the UNIFAC(Universal Functional Activity Coefficient) group contribution model. The experimentally derived flash point was also compared with the predicted flash point from the UNIFAC model. The UNIFAC model is able to estimate the flash point fairly well for n-octane+n-decane mixture and n-octane+n-dodecane mixture.

Octane Biodegradability by Crude Oil4 tilizing Bacteria Carrying OCT Plasmid (OCT 플라스미드를 갖는 원유 분해세균에 의한 Octane 분해능)

  • 최순영;김창숙;황문옥;민경희;이명혜
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.82-87
    • /
    • 1991
  • Xanthomonns curnpestris M12, Xunthornonas sp. M28, Acinetuhucter Iwofz GI, and Klebsiella pneumoniae L25, Pseudomonas rnaltophiliu N246 were screened to increase the ability for crude oil utilization. All of these could utilize hexadecane and octane with the exception of N246 strain for only octane biodegradation. Thus N246, M12, and M28, strains were specially examined for octane oxidation. Octane biodegradation by three strains showed the optimal conditions at $30^{\circ}C$, pH 7.0~9.0, and 0.2~0.3% octane concentration as a substrate. It was found that P. multofihila N246 and X. curnpestns M12 had plasmid and the cured plasmid from N246 strain lost octane uitilization. Therefore, it was confirmed that certain genes for octane utilization were Iocated on OCT plasmid in N246 strain. The size of OCT plasmid in N246 strain was 118 kb. The N246 strain was resistant to ampicillin.

  • PDF

Determination of Flash Point for n-Octane+n-Nonane and n-Nonane+n-Decane Systems by Seta flash Apparatus (Seta flash 장치에 의한 n-Octane + n-Nonane계 및 n-Nonane + n-Decane계의 인화점 결정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.11-17
    • /
    • 2020
  • In order to guarantee safe storage and transportation of a flammable liquid solution, it is very important to know its flash point information. In this paper, flash points of n-octane+n-nonane system and n-nonane+n-decane system were measured by Seta flash apparatus and an empirical equation is proposed for the accurate estimation of flash point. Empirical equation is used to predict flash point of n-octane+n-nonane system and n-nonane+n-decane system, which were also compared to Unifac-based model. Absolute average errors of flash point data predicted by Unifac-based model are 0.7℃ and 0.6℃ for n-octane+n-nonane system and n-nonane+n-decane system, respectively. Absolute average errors of flash point data predicted by empirical equation are 0.2℃ and 0.4℃ for n-octane+n-nonane system and n-nonane+n-decane system, respectively. In conclusion, empirical equation proposed in this paper, presented the most satisfactory.

Prediction of Autoignition Temperature of n-Propanol and n-Octane Mixture (n-Propanol과 n-Octane 혼합물의 최소자연발화온도의 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • The lowest values of the AITs(Autoignition temperatures) in the literature were normally used fire and explosion protection. In this study, the AITs of n-Propanol+n-Octane system were measured from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-Propanol and n-Octane which constituted binary systems were $435^{\circ}C$ and $218^{\circ}C$, respectively. The experimental ignition delay time of n-Propanol+n-Octane system were a good agreement with the calculated ignition delay time by the proposed equations with a few A.A.D.(average absolute deviation).

Effect of Various Additives and Solvents on Thermostability of Cyclodextrin Glucanotransferase from Bacillus stearothermophilus (여러 첨가물의 용매가 Bacillus stearothermophilus가 생산하는 Cyclodextrin Glucanotransferase의 열안정성에 미치는 영향)

  • 안중훈;황진봉;김승호
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.368-371
    • /
    • 1991
  • The influence of ethylene glycol, glycerol, sorbitol and sucrose on the thermostability of Bacilus stearothermophzlus cyclodextrin glucanotransferase (CGTase) was investigated. Glycerol, sorbitol and sucrose had effect on thermostability of the CGTase. The effects appeared to be strongly dependent on concentration of additives. The thermostability of CGTase also was assayed in organic solvents such as n-butanol, l, &dioxane, n-octane. The therrnostability of CGTase increased in l, 4-dioxane and n-octane. Particularly, in n-octane, the CGTase retained the 81% of the initial activity after incubation at $75^{\circ}C$ for 90 min.

  • PDF

Experimental Study on the Soot Formation Behavior of Octane Single Fuel Droplet Under the Constant Volume Combustion Conditions (정적 연소 조건에서 Octane 단일 연료 액적의 매연 생성 거동에 관한 연구)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.389-395
    • /
    • 2017
  • This study was performed to provide the information of the soot formation behavior of octane single fuel droplet under the identical combustion conditions. To achieve this, this experimental study provide the results of the soot formation characteristics of octane droplet in accordance with different initial droplet diameter($d_0$), at the same time, experiment was conducted under the same combustion conditions which are 1.0atm of ambient pressure($P_{amb}$), 21% of oxygen concentration($O_2$) and 79% of nitrogen concentration($N_2$). Visualization of octane droplet combustion was performed by visualization system with high speed camera. The results of maximum soot volume fraction($f_{vmax}$) was almost the same under the equivalent ambient conditions regardless of initial droplet diameter. Furthermore, maximum soot volume fraction was showed the higher value in the measuring direction between $135^{\circ}$ and $315^{\circ}$ since the soot-tail is generated during two opposing igniters movement process.

A study on the effect of Octane-Number on combustion characteristics and vehicle performance (옥탄가 차이가 연소특성 및 차량 성능에 미치는 영향 연구)

  • Noh, Kyeong-ha;Kim, Jung-hwan;Lee, Min-ho;Kim, Ki-ho
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.41-50
    • /
    • 2016
  • This study examined the combustion characteristics and emissions, fuel economy, acceleration by selecting the two fuel with octane number difference to investigate the effect on the combustion characteristics and performance of the vehicle according to the octane number. First, a single-cylinder engine was used for the combustion characteristic experiment, Of the fuel, which is distributed on the market by the selection of two different octane fuel it is performed experiments. Single cylinder experiment examined the combustion characteristics that appear when you gradually advancing the ignition timing by the ignition timing and air-fuel ratio control for each fuel and through an output, emissions, pressure, hence examined the correlation between by octane number. In addition through the actual vehicle compared the changes in the fuel octane number difference, through acceleration tests examined the impact of the octane number requirements for high-performance segment. As a result, fuel of high octane number in accordance with the ignition timing the advancing showed a slightly stable combustion characteristics, a slight increase occurred in the acceleration test and power. However, both fuel does not significantly differ from the current mode, simulating the urban and highway fuel efficiency. Therefore, the operating conditions of the vehicle currently being sold on the Effects of high-octane fuel. fuel efficiency was found insufficient.

Solubilization of Mixture of Hydrocarbon Oils by C12E8 Nonionic Surfactant Solution (C12E8 비이온 계면활성제 수용액에 의한 탄화수소 오일 혼합물의 가용화 특성에 관한 연구)

  • Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • The equilibrium solubilization capacity of the mixture of hydrocarbon oils by $C_{12}E_8$ nonionic surfactant micellar solution was measured at $23^{\circ}C$ by gas chromatography (GC) analysis. Experimental results indicated that the solubilization capacity for pure alkanes was found to decrease almost linearly with the alkane carbon number (ACN) of the hydrocarbon oil. For the binary mixture systems of the hydrocarbon oils both selective and nonselective solubilization behaviors were observed depending on the difference in ACN of the two hydrocarbon oils. Equilibrium solubilization tests for the hydrocarbon oil mixtures in $C_{12}E_8$ surfactant solutions such as the three n-octane/n-nonane, n-nonane/n-decane and n-decane/n-undecane mixture systems suggest almost non-selective solubilization. On the other hand, the n-octane/n-decane and n-octane/n-undecane systems, where difference in ACN of the two hydrocarbon oils is greater than 1, selective solubilization in favor of n-octane was conclusively demonstrated.

Simplified Reaction Scheme of Hydrocarbon Fuels and Its Application to Autoignition of Gasoline with Different Octane Numbers (탄화수소계 연료의 축소반응모델과 가솔린연료의 옥탄가 변화에 따른 자발화 지연시간)

  • 여진구
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.13-19
    • /
    • 2003
  • Mathematically simplified reaction scheme that simulates autoignitions of the end gases in spark ignition engines has been studied computationally. The five equation model is described, to predict the essential features of hydrocarbon oxidation. This scheme has been calibrated against autoignition delay times measured in rapid compression machines. The rate constants, activation temperatures, Ta, Arrhenius preexponential constants, A, and heats of reaction for stoichiometric n-heptane/air, iso-octane/air, and their mixtures have all been optimised. The optimisation has been guided by Morley's correlation of the ratio of chain branching to linear termination rates with octane number. Comparisons between computed and experimental autoignition delay times have validated the Present simplified reaction scheme and the influences of octane number upon autoignition delay times have been computationally investigated. It has been found that both cool flame and high temperature direct reactions can have an effect on autoignition delay times.

Acute and Subchronic Inhalation Toxicity of n-Octane in Rats

  • Sung, Jae-Hyuck;Choi, Byung-Gil;Kim, Hyeon-Yeong;Baek, Min-Won;Ryu, Hyun-Youl;Kim, Yong-Soon;Choi, Young-Kuk;Yu, Il-Je;Song, Kyung-Seuk
    • Safety and Health at Work
    • /
    • v.1 no.2
    • /
    • pp.192-200
    • /
    • 2010
  • Objectives: We have investigated the toxic effects of the inhalation of subchronic and acute levels of n-octane. Methods: The rats were exposed to n-octane of 0, 2.34, 11.68 and 23.36 mg/L (n = 5 rats/group/gender) in an acute inhalation test (Organization for Economic Co-operation and Development (OECD) TG 403), or to 0, 0.93, 2.62 and 7.48 mg/L (n = 10 rats/group/gender) for a subchronic inhalation test (OECE TG 413), to establish a national chemical management system consistent with the Globally Harmonized Classification System (GHS). Results: Acutely-exposed rats became lethargic but recovered following discontinuation of inhalation. Other clinical symptoms such as change of body weight and autopsy finds were absent. The LC50 for the acute inhalation toxicity of n-octane was determined to exceed 23.36 mg/L and the GHS category was 'not grouping'. Subchronically-treated rats displayed no significant clinical and histopathological differences from untreated controls; also, target organs were affected hematologically, biochemically and pathologically. Therefore, the no observable adverse effect level was indicated as exceeding 7.48 mg/L and the GHS category was 'not grouping' for the specific target organ toxicity upon repeated exposure. Conclusion: However, n-octane exposure should be controlled to be below the American Conference of Industrial Hygienists recommendation (300 ppm) to prevent inhalation-related adverse health effects of workers.