• Title/Summary/Keyword: Oceanographic Data

Search Result 349, Processing Time 0.028 seconds

A Study on Development of Database for the Characteristics of Hazardous Chemicals (유해화학물질 특성정보 데이터베이스 구축 연구)

  • Han, Jong-Yup;Song, Ki-Sup;Kang, Sung-Hyun
    • Journal of Information Management
    • /
    • v.28 no.2
    • /
    • pp.1-19
    • /
    • 1997
  • A late-comer in the marine affairs, development of ways for efficient access and utilization of information on marine environmental conservation and pollution prevention is important. The properties and removal methods of toxic chemicals have been entered into the database for 1,000 substances. The database of toxic chemicals for pollution and spills has also been fortified for the following terms: general characteristics, health hazard and response, fire hazard and response, chemical reactivity, physico-chemical properties, and other properties. The information and data running in this database are easily accessible via Internet and Korean telecommunications companies; it is also available KRISTAL databases.

  • PDF

Coastal Stratification Induced by Oceanographic Conditions of Open Sea in the East Sea on February, 2013 (2013년 2월 동해의 근해 해황에 의한 연안 성층)

  • Choi, Yong-Kyu;Kim, Sang-Woo;Jeong, Hee-Dong;Shim, Jeong-Min;Kwon, Kee-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.327-333
    • /
    • 2013
  • In order to see the stratification phenomenon in the coastal area induced by oceanographic conditions of the open sea, we analyzed the CTD (Conductivity-Temperature-Depth) data taken from the oceanographic survey on February 16~28, 2013. The stratification in Jukbyun coast was stronger than those of Sokcho and Gampo coast. Jukbyun line (104 line in the Serial Oceanographic Observation of National Fisheries Research and Development Institute) showed the anticyclonic eddy in the vertical distribution of temperature. The isotherm of $10^{\circ}C$ was concaved to the depth of 200 m in the middle station (station no. 9) of the line 104. It showed above $4^{\circ}C$ in positive temperature anomaly in the depth of 100~200 m in the middle station (station no. 9) of the line 104. This positive temperature anomaly was stretched to the coastal area with shallower depth. It is suggested that the stratification in Jukbyun coast was resulted from the onshoring of the Ulleung warm eddy. The movement of warm eddy may be act as a block to migration of cold water fishes like cod.

The Cause of Abnormal Tidal Residuals Along the Coast of the Yellow Sea in November 2013 (황해연안의 2013년 11월 이상조위편차 발생 원인)

  • Kim, Ho-Kyun;Kim, Young Taeg;Lee, Dong Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.4
    • /
    • pp.344-353
    • /
    • 2016
  • The cause of abnormal tidal residuals was examined by analyzing sea levels, sea surface atmospheric pressures, winds at ten tide stations, and current, measured at the coast of the Yellow Sea from the night of November $24^{th}$ to the morning of the $25^{th}$ in 2013, along with weather chart. Additionally, the cross-correlations among the measured data were also examined. The 'abnormal tidal residuals' mentioned in this study refer to differences between maximum and minium tidal residuals. The largest abnormal tidal residual was identified to be a difference of 176 cm occurring over 4 hours and 1 minute at YeongJongDo (YJD) with a maximum tidal residual of 111 cm and minimum of -65 cm. The smallest abnormal tidal residual was 68 cm at MoSeulPo (MSP) during 8 hours 52 minutes. The cause of these abnormal tidal residuals was not a meteo-tsunami generated by an atmospheric pressure jump but wind generated by the pressure patterns. The flow speed due to these abnormal tidal residuals as measured at ten tide stations was not negligible, representing 16 ~ 41 % of the annual average ebb current speed. From the cross correlation among the tidal residuals, winds, and tidal residual currents, we learned the northern flow, due to southerly winds, raised the sea level at Incheon when a low pressure center located on the left side of the Korean Peninsula. After passing the Korean Peninsula, a southern flow due to northerly winds decreased the sea level.

Estimation of the Range of the Suspended Solid from the Nakdong River using Satellite Imageries and Numerical Model (위성영상 및 수치모델을 이용한 낙동강유출 부유토사 확산범위 추정)

  • Hwang, Jae-Dong;Kang, Yong Q.;Suh, Yong-Sang;Cho, Kyu Dae;Park, Sung Eun;Jang, Lee-Hyun;Lee, Na Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.25-33
    • /
    • 2002
  • We were trying to understand indirectly the range of the discharge from the Nakdong with the dispersion of suspended solid(SS) related to the amount of discharge from river in this study. The range of dispersion of SS from the Nakdong was estimated using satellite remote sensing and numerical modeling. The stream field with two dimensional and numerical model using the condition of integrated depth was calculated. According to the results, the streamline flowed from Busan to the Jinhae Bay and Geojae Island. at the flood. The situation at the ebb was totally changed. The streamline flowed out Busan from the Bay. The velocity in offshore was faster than one at coastal water of the Nackdong. Residual current which was averaged during 12hours dominantly appeared the dominant direction from the southwestern part of the Nackdong to the northeastern part of it. The eastward current appeared at the eastern coast of Gaduck Is. Base on the results of the velocity field, the quantifying of the dispersion of SS was estimated by the method of numerical tracer related to the Lagrangian method. The significant range of the dispersion of the SS from the Nackdong was from the eastern coast of Gaduck Is, to the coastal areas of Busan, Korea. The estimated range of the dispersion of the SS using the SeaWiFS and Landsat satellite data was similar to the estimated results using the numerical model.

  • PDF

Spatial Distribution Characteristics of Vertical Temperature Profile in the South Sea of Jeju, Korea (제주 남부해역 수온 수직구조의 공간분포 특성 파악)

  • Yoon, Dong-Young;Choi, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.162-174
    • /
    • 2012
  • To visualize the characteristics of vertical seawater temperature data, in the ocean having 3D spatial characteristics, 2D thematic maps like horizontal seawater temperature distribution map at each depth layer and 3D volume model using 3D spatial interpolation are used. Although these methods are useful to understand oceanographic phenomena visually, there is a limit to analyze the spatial pattern of vertical temperature distribution or the relationship between vertical temperature characteristics and other oceanic factors (seawater chemistry, marine organism, climate change, etc). Therefore, this study aims to determine the spatial distribution characteristics of vertical temperature profiles in the South Sea of Jeju by quantifying the characteristics of vertical temperature profiles by using an algorithm that can extract the thermocline parameters, such as mixed layer depth, maximum temperature gradient and thermocline thickness. For this purpose spatial autocorrelation index (Moran's I) was calculated including mapping of spatial distribution for three parameters representing the vertical temperature profiles. Also, after grouping study area as four regions by using cluster analysis with three parameters, the characteristics of vertical temperature profiles were defined for each region.

Study on the Southern Coastal Waters of Korea by NOAA Image (NOAA영상자료에 의한 한국 남해안연안수 조사연구)

  • 김복기
    • Korean Journal of Remote Sensing
    • /
    • v.5 no.1
    • /
    • pp.57-67
    • /
    • 1989
  • This study on the southern coastal waters of Korea has been made by analysis of NOAA image and oceanographic observation data from October 1987 to August 1988. The results obtained from the study are as follow: Horizontal distributions of water temperature in different layers in winter ranged from 6.07 to 18.62$^{\circ}C$ at 0m layer, 6.02 to 18.54$^{\circ}C$ at 30m layer and 7.19 to 18.69$^{\circ}C$ at 50m layer. Consequently its vertical distribution showed homogeneity. Horizontal water temperature gradients were 0.28$^{\circ}C$/mile between the coastal waters and Tsushima warm waters. In summer, its horizontal distribution varied from 19.37 to 29.92$^{\circ}C$ at 0m layer, 13.26 to 27.11$^{\circ}C$ at 30m layer and 7.36 to 26.6$0^{\circ}C$ at 50m layer, and its vertical profile showed stratified structure. Vertical water temperature gradients were 0.44$^{\circ}C$/m between 30 and 50m layers. It was remarkable that distribution of southern coastal water system analysed by NOAA image coincided with relatively the oceanographic observation data but SST from NOAA image seemed to be 2-4$^{\circ}C$ lower in winter and 4-6$^{\circ}C$ lower in summer than the oceanographic data.

Estimation of Typhoon Center Using Satellite SAR Imagery (인공위성 SAR 영상 기반 태풍 중심 산정)

  • Jung, Jun-Beom;Park, Kyung-Ae;Byun, Do-Seong;Jeong, Kwang-Yeong;Lee, Eunil
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.502-517
    • /
    • 2019
  • Global warming and rapid climate change have long affected the characteristics of typhoons in the Northwest Pacific, which has induced increasing devastating disasters along the coastal regions of the Korean peninsula. Synthetic Aperature Radar (SAR), as one of the microwave sensors, makes it possible to produce high-resolution sea surface wind field around the typhoon under cloudy atmospheric conditions, which has been impossible to obtain the winds from satellite optical and infrared sensors. The Geophysical Model Functions (GMFs) for sea surface wind retrieval from SAR data requires the input of wind direction, which should be based on the accurate estimation of the center of the typhoon. This study estimated the typhoon centers using Sentinel-1A images to improve the problem of typhoon center detection method and to reflect it in retrieving the sea surface wind. The results were validated by comparing with the typhoon best track data provided by the Korea Meteorological Administration (KMA) and Japan Meteorological Agency (JMA), and also by using infrared images of Himawari-8 satellite. The initial center position of the typhoon was determined by using VH polarization, thereby reducing the possibility of error. The detected center showed a difference of 23.76 km on average with the best track data of the four typhoons provided by the KMA and JMA. Compared to the typhoon center estimated by Himawari-8 satellite, the results showed an average spatial variation of 11.80 km except one typhoon located near land with a large difference of 58.73 km. This result suggests that high-resolution SAR images can be used to estimate the center and retrieve sea surface wind around typhoons.

A Study on Fusion and Visualization using Multibeam Sonar Data with Various Spatial Data Sets for Marine GIS

  • Kong, Seong-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.407-412
    • /
    • 2010
  • According to the remarkable advances in sonar technology, positioning capabilities and computer processing power we can accurately image and explore the seafloor in hydrography. Especially, Multibeam Echo Sounder can provide nearly perfect coverage of the seafloor with high resolution. Since the mid-1990's, Multibeam Echo Sounders have been used for hydrographic surveying in Korea. In this study, new marine data set as an effective decision-making tool in various fields was proposed by visualizing and combining with Multibeam sonar data and marine spatial data sets such as satellite image and digital nautical chart. The proposed method was tested around the port of PyeongTaek-DangJin in the west coast of Korea. The Visualization and fusion methods are described with various marine data sets with processing. We demonstrated that new data set in marine GIS is useful in safe navigation and port management as an efficient decision-making tool.

Assimilation of Oceanographic Data into Numerical Models over the Seas around Korea

  • Kim, Seung-Bum
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.345-357
    • /
    • 2001
  • This review provides a summary of data assimilation applied to the seas around Korea. Currently the worldwide efforts are devoted to applying advanced assimilation to realistic cases, thanks to improvements in mathematical foundations of assimilation methods and the computing capabilities, and also to the availability of extensive observational data such as from satellites. Over the seas around Korea, however, the latest developments in the advanced assimilation methods have yet to be applied. Thus it would be timely to review the progress in data assimilation over the seas. Firstly, the definition and necessity of data assimilation are described, continued by a brief summary of major assimilation methods. Then a review of past research on the ocean data assimilation in the regional seas around Korea is given and future trends are considered. Special consideration is given to the assimilation of remotely-sensed data.

Performance evaluation of Wave observation system using GPS (GPS를 이용한 파고 관측 시스템의 성능 평가)

  • Huh, Yong;Hwang, Chang-Su;Kim, Dae Hyun;Heo, Sin;Kim, Joo-Youn;Lee, Kee-Wook;Hong, Sung-Doo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.357-362
    • /
    • 2012
  • Despite the Wave observations data is very important information to human life at sea, the technology development and research for wave equipments are lacking. In this study, the wave observation system using GPS was evaluated the quality of wave observation data by comparing of long-term observations. The result of the comparison of the acceleration sensor (Hippy-40) and GPS sensor (Mose-1000), the correlation coefficient of the significant wave height and significant wave periods is 0.997 and 0.990 respectively. Also in case of BIAS, the significant wave height is 0.014 m, the significant wave period is -0.212 sec. It makes no significant differences whether the acceleration sensor (Hippy-40) and GPS sensor (Mose-1000). These results of the wave observation data using GPS quality will be evaluated as very good.