• Title/Summary/Keyword: Oceanic movement

Search Result 30, Processing Time 0.022 seconds

Numerical Experiment on Sea Prince Oil Spill Incident Using a High Resolution Ocean Circulation Model (고해상도 해양순환모형을 이용한 씨프린스호 유류유출 사고 수치실험)

  • Kim, Ye-Sol;Lee, Ho-Jin;Jung, Kyung-Tae;Park, Jae-Hun;Lee, Hyun-Jung
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.337-348
    • /
    • 2012
  • This study investigates the effects of tide, wind and oceanic currents on oil spill dispersions through a series of numerical floats tracking experiments on the Sea Prince oil spill incident occurred in 1995 using a 3-dimensional high resolution ocean circulation model. For that, a total of four experimental cases (experiment with tide, wind and oceanic currents, experiment with tide and oceanic currents, experiment with wind and oceanic currents, and experiment with tide and wind) were compared. It could be seen that results from experiment involving all external forces showed better agreement with the observed pattern of oil slick movement than other cases. The oceanic currents acted to drive floats to move to the western channel of the Korea straits and wind accelerated the eastward movement of floats in the early stage of the incident. Tidal currents played significant role in the horizontal dispersion of floats.

Time Synchronization with Oceanic Movement Pattern in Underwater Wireless Networks (해수운동의 특성을 활용한 수중 무선 네트워크 시각 동기화)

  • Kim, Sungryul;Park, Seongjin;Yoo, Younghwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.5
    • /
    • pp.486-496
    • /
    • 2013
  • Time synchronization in underwater environment is challenging due to high propagation delay and mobility of sensor nodes. Previous researches do not consider practical issues affecting on the accuracy of time synchronization such as high-channel access delay and relative position between sensor nodes. Also, those protocols using bidirectional message exchange shorten the network lifetime and decrease the network throughput because numerous transmission, reception and unnecessary overhearing can be occurred. Therefore, in our research, we suggest enhanced time synchronization based on features of underwater environment. It controls the instant of transmission by exploiting the feature of an oceanic movement and node deployment. Moreover, the protocol uses more accurate time information by removing channel access delay from the timestamp. The proposed scheme is also practical on the underwater sensor network requiring low-power consumption because the scheme conducts time-synchronization with smaller transmission and reception compared with previous works. Finally, simulation results show that the proposed protocol deceases time error by 2.5ms and 0.56ms compared with TSHL and MU-Sync respectively, reducing energy consumption by 68.4%.

Tracking the Movement and Distribution of Green Tides on the Yellow Sea in 2015 Based on GOCI and Landsat Images

  • Min, Seung-Hwan;Oh, Hyun-Ju;Hwang, Jae-Dong;Suh, Young-Sang;Park, Mi-Ok;Shin, Ji-Sun;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.97-109
    • /
    • 2017
  • Green tides that developed along the coast of China in 2015 were detected and tracked using vegetation indices from GOCI and Landsat images. Green tides first appeared near the Jiangsu Province on May 14 before increasing in size and number and moving northward to the Shandong Peninsula in mid-June. Typhoon Cham-hom passed through the Yellow Sea on July 12, significantly decreasing the algal population. An algae patch moved east toward Korea and on June 18 and July 4, several masses were found between the southwestern shores of Korea and Jeju Island. The floating masses found in Korean waters were concentrated at the boundary of the open sea and the Jindo cold pool, a phenomenon also observed at the boundary of coastal and offshore waters in China. Sea surface temperatures, derived from NOAA SST data, were found to play a role in generation of the green tides.

Using Tintinnid Distribution for Monitoring Water Mass Changes in the Northern East China Sea (북부 동중국해 수괴 변화 감시를 위한 유종섬모류 분포 적용)

  • Kim, Young-Ok;Noh, Jae-Hoon;Lee, Tae-Hee;Jang, Pung-Guk;Ju, Se-Jong;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.219-228
    • /
    • 2012
  • Tintinnid species distribution has been monitored in the northern East China Sea (ECS) in the summer of 2006 through 2011. This is used to understand the water mass movements in the northern ECS. The warm oceanic tintinnid species had largely spread in 2007 in the area, indicating that there was greater warm water extension into the northern ECS. However the extension of neritic water within the Changjiang diluted water mass has strengthened in 2008 and 2010 because the neritic species distribution had relatively grown in both years. These annual results based on the biological indicators of tintinnid species are well matched with the salinity change in the area. The warm oceanic species, Dadayiella ganymedes had frequently occurred over the study years and had shown a significant relationship with the salinity change. This is valuable as a key stone species for monitoring the intrusion of the Kuroshio within the northern ECS. Information from tintinnid biological indicators can support physical oceanography data to confirm ambiguous water mass properties.

Age Dating of Seafloor by Interpretation of Geomagnetic Structure and Study on the Magnetic Basement of the Sea Mount (지자기 구조해석에 의한 해저년대의 측정과 해산의 자기기기반구조의 연구)

  • 신기철;한건모
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.35-42
    • /
    • 1990
  • The area where age dating of the seafloor and interpretation of geomagnetic basic structure are conducted is also important in the aspect of geophysics. Near the sea mount (water depth to the top is 3900m and 6500m to the bottom), there are Mesozoic magnetic lineations at the sea-side flank along the trench axis. A two dimensional model analysis of Talwani and Heirtzler(1964) and a three dimensional model analysis of Talwani are performed by using data obtained from the marine proton magnetometer. Distribution, direction of the lineation, amplitude and period of magnetic anomaly are correlated and analysed with speed of the plate movement and lineation of the sea mount. In the west and north-west Pacific there are lots of huge sea mounts retaining the history of oceanic crust. This indicates that geomagnetic basis subsided into the oceanic crust and has interest in the aspects of the isostasy theory of the gravity.

  • PDF

Development Mechanism of Circulation Current and Oceanographic Characteristics in Yeongil Bay (영일만 순환류 발생구조와 해황 특성)

  • Yoon, Han-Sam;Lee, In-Cheol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.140-147
    • /
    • 2005
  • We investigated the interactions between coastal waters of the Yeongil Bay, Korea, and oceanic waters of the Eastern Sea, as wet 1 as the development mechanism of vertical circulation currents in the bay. The oceanic waters of the bay have an average water temperature of $12.2{\sim}18.4^{\circ}C$ and salinity of $33.32{\sim}34.43$ PSU. Results of spectral analysis have shown that the period of revolution between oceanic and coastal waters is about 0.84-0.91 years in the surface waters and 1.84 years in the bottom layer. The wind direction in the bay shifts between SW and NE, with the main wind direction being SW during the winter period, and water mass movement is influenced by such seasonal variations in wind direction. Vertical circulation currents in the bay are structured by two phenomena: the surface riverine outflow layer from the Hyeong-san River into the open sea and the bottom oceanic inflow layer with high-temperature and salinity into the bay. These phenomena start the spring when the water mass is stable and become stronger in the summer when the surface cold water develops over a 10-day period. Consequently, tidal currents have little influence in the bay; rather, these vertical and horizontal circulation currents play an important role in the transport of the pollutant load from the inner bay to the open sea.

  • PDF

Sea Wave Modeling Analysis and Simulation for Shipboard Landing of Tilt Rotor Unmanned Aerial Vehicle (틸트로터 무인기 함상이착륙 위한 파고운동 해석 및 시뮬레이션)

  • Yoo, Chang-Sun;Cho, Am;Park, Bum-Jin;Kang, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.731-738
    • /
    • 2014
  • The mission of UAV has been expanded from a land to an ocean based on an enhancement of its technologies. Korea Aerospace Research Institute (KARI) also tries to expand the mission of tilt rotor UAV to an ocean, in which the shipboard landing of UAV is required. However the environment of an oceanic operation is severer than that of land due to salty, fogy, and windy condition. The landing point for automatic landing is not fixed due to movement of shipboard in roll, pitch, and heave. It makes the oceanic operation and landing of UAV difficult. In order to conduct an oceanic operation of tilt rotor UAV, this paper presents that the sea wave modeling according to the sea state is conducted and the shipboard landing of tilt rotor UAV under the sea wave is tested and evaluated through the flight simulator for UAV.

A Case Study of Personal and Creative Fashion Design Development: Swirls in Motion - a Goddess and Seashells -

  • Choi, Kyung-Hee
    • International Journal of Costume and Fashion
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2006
  • This case study is to embody the birth of a beautiful goddess out of seashells in a contemporary fashion design collection, on the basis of the mythology of The Birth of Venus. The main theme attempts to reinterpret the image of the goddess of love and beauty and express the organic vitality of seashells and oceanic feelings by swirls in motion. To accomplish this, three dimensional silhouette of layered forms of voluminous outer and fitted inner is applied to design ideas with spiral curves. The opposite texture of something sculptural and transparent versus smooth and shiny is used to express the layered structure of seashells with the delicacy of goddess. Neutral colours and different tones of pink appeal to oceanic feelings and feminine emotion in a modern way. Various techniques by the geometric simplicity of flat patterns and pleating with boning are also performed to express the vital movement of organism. Throughout the whole process of this case study, the conceptual idea of Swirls in Motion - a goddess and seashells is reinterpreted to a contemporary fashion by personal and creative design development process. In particular, it is evaluated by the process of primary researches, various design developments and experimentations to the main theme.

A Study on the Dominant Driving Force of Plate Movement presented in the High School Earth Science Textbooks (고등학교 지구과학 교과서에 제시된 판 이동의 주된 원동력에 대한 고찰)

  • Jeon, Taehwan;Seo, Ki-Weon;Lee, Gyuho
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.62-77
    • /
    • 2016
  • In the early model of plate tectonics, the plate was depicted as a passive raft floating on the convecting mantle and carried away by the mantle flow. At the same time, ridge push at spreading boundaries and drag force exerted by the mantle on the base of lithosphere were described as the dominant driving forces of plate movements. However, in recent studies of plate tectonics, it is generally accepted that the primary force driving plate motion is slab pull beneath subduction zones rather than other forces driven by mantle convection. The current view asserts that the density contrast between dense oceanic lithosphere and underlying asthenosphere is the substance of slab pull. The greater density of oceanic slab allows it to sink deeper into mantle at trenches by gravitational pull, which provides a dominant driving force for plate motion. Based on this plate tectonics development, this study investigated the contents of plate tectonics in high school Earth Science textbooks and how they have been depicted for the last few decades. Results showed that the early explanation of plate movement driven by mantle convection has been consistently highlighted in almost all high school textbooks since the 5th curriculum, whereas most introductory college textbooks rectified the early theory of plate movement and introduced a newly accepted theory in revised edition. Therefore, we suggest that the latest theory of plate tectonics be included in high school textbooks so that students get updated with recent understanding of it in a timely manner.

Tracing the Drift Ice Using the Particle Tracking Method in the Arctic Ocean (북극해에서 입자추적 방법을 이용한 유빙 추적 연구)

  • Park, GwangSeob;Kim, Hyun-Cheol;Lee, Taehee;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1299-1310
    • /
    • 2018
  • In this study, we analyzed distribution and movement trends using in-situ observations and particle tracking methods to understand the movement of the drift ice in the Arctic Ocean. The in-situ movement data of the drift ice in the Arctic Ocean used ITP (Ice-Tethered Profiler) provided by NOAA (National Oceanic and Atmospheric Administration) from 2009 to 2018, which was analyzed with the location and speed for each year. Particle tracking simulates the movement of the drift ice using daily current and wind data provided by HYCOM (Hybrid Coordinate Ocean Model) and ECMWF (European Centre for Medium-Range Weather Forecasts, 2009-2017). In order to simulate the movement of the drift ice throughout the Arctic Ocean, ITP data, a field observation data, were used as input to calculate the relationship between the current and wind and follow up the Lagrangian particle tracking. Particle tracking simulations were conducted with two experiments taking into account the effects of current and the combined effects of current and wind, most of which were reproduced in the same way as in-situ observations, given the effects of currents and winds. The movement of the drift ice in the Arctic Ocean was reproduced using a wind-imposed equation, which analyzed the movement of the drift ice in a particular year. In 2010, the Arctic Ocean Index (AOI) was a negative year, with particles clearly moving along the Beaufort Gyre, resulting in relatively large movements in Beaufort Sea. On the other hand, in 2017 AOI was a positive year, with most particles not affected by Gyre, resulting in relatively low speed and distance. Around the pole, the speed of the drift ice is lower in 2017 than 2010. From seasonal characteristics in 2010 and 2017, the movement of the drift ice increase in winter 2010 (0.22 m/s) and decrease to spring 2010 (0.16 m/s). In the case of 2017, the movement is increased in summer (0.22 m/s) and decreased to spring time (0.13 m/s). As a result, the particle tracking method will be appropriate to understand long-term drift ice movement trends by linking them with satellite data in place of limited field observations.