• Title/Summary/Keyword: Ocean thermal energy conversion (OTEC)

Search Result 46, Processing Time 0.021 seconds

A Study of The Effect of Corrosion on Heat Transfer in a Heat Exchanger (열교환기에서 부식이 열전달에 미치는 영향에 관한 연구)

  • Kwon, Hyun-Min;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.227-232
    • /
    • 2019
  • Heat pump systems based on ocean thermal energy conversion (OTEC) systems use the temperature difference between deep ocean water and surface ocean water to operate. However, they may have heat transfer degradation due to corrosion on the heat exchanger surface due to the salinity of sea water. This study presents experimental results for the heat transfer decrease of corroded metal tubes with respect to corrosion time. In order to replace high-priced titanium, electro-deposition (ED) coating was performed on aluminum tubes. Aluminum tubes with ED coating thicknesses of 10, 15, and $20{\mu}m$ were tested for double-tube heat exchangers after performing accelerated corrosion for 6, 12, and 18 weeks. The effects of the coating thickness and the corrosion time on the heat transfer degradation were investigated. From the results, the aluminum tube with an ED coating of $20{\mu}m$ thickness can be suggested as a candidate for replacing titanium tubes.

Conceptual Design of a Riser for 10 MW OTEC (10MW급 해양온도차발전을 위한 라이저 개념설계)

  • Jung, Dongho;Kwon, Yongju;Kim, Hyeonju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • The concept design of a riser for Ocean Thermal Energy Conversion in 10 MW is proposed and its dynamic behaviour characteristics is analyzed with numerical method. A riser pipe with a hollow along its thickness in the cross-section to increase the effective modulus of its cross-section is designed considering the manufacture. The riser pipe without hollows along its thickness needs a lumped weight at the bottom end of a riser in order to keep its vertical hanging configuration from large buoyancy and the strong current. The riser is designed to control its density by inserting materials in high or low density into a hollow. The dynamic behaviour characteristics of the two designed risers is evaluated with the developed numerical analysis tool. The combined stress of the riser with a lumped weight is showed to be dominated by weight of a lumped mass. The riser with no hollow shows large combined stress near sea surface by strong current. Local structural analysis for the cross-section of a hollow riser is needed in detail.

Numerical Study for the Optimal Design of Plate Heat Exchanger Using at Seawater Air Conditioning (해수냉난방용 판형 열교환기의 최적설계를 위한 수치적 연구)

  • Kim, Hyeon-Ju;Jung, Young-Kwon;Lee, Ho-Saeng;Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.29-35
    • /
    • 2014
  • Plate heat exchanger are being applied in the field of OTEC (ocean thermal energy conversion) and SWAC (seawater air conditioning) system. This study is to analyze numerically the heat transfer and pressure drop characteristics by using solid works flow simulation in order to offer optimum design data of plate heat exchanger. Plater heat exchanger proposed in this study is four types. The geometric design parameters of plate heat exchanger are a channel space, a flow orientation, a plate array, the flowrate of working fluid and so on. The main results for numerical analysis of plate heat exchangers are summarized as follows. Heat transfer performance for the channel space of 2.4 mm shows the highest value compared to other spaces. And, the Type 4 plate heat exchanger in Table 2 is the highest performance. From the pressure drop characteristics of plate heat exchanger, the channel space of 3.2 mm shows the lowest value. And Type 1 plate heat exchanger in Table 2 is the lowest pressure drop.

A Study on the Ship's ORC Power System using Seawater Temperature Difference (선박의 해수 온도차를 이용한 ORC 발전 시스템에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC(Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation is performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. The result shows that 1,000kW power generation is available from exhaust gas and 600kW power generation is available from sea water cooling system. Different fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared.

A Study on the Drag Reduction for Performance the Improvement of Low Temperature Utilization Systems (저온 활용 시스템의 효율 제고를 위한 마찰 저항 감소 연구)

  • Chun, Won-Gee;Kim, Chul-Am;Sung, Jun-Hee;Choi, Hyoung-Jin;Kim, Chong-Bo;Kim, Hyung-Taek
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.13-22
    • /
    • 1997
  • Drag reduction produced by the dilute solution of polymer under turbulent flow in a rotating disk apparatus(RDA) was investigated in this study for the purpose of potential application to the Ocean Thermal Energy Conversion(OTEC) system. Four different molecular weights of poly(ethylene oxide)(PEO) were used as drag reducing additives, and synthetic seawater was adopted as a solvent. Experiments were undertaken to observe the dependence of drag reduction on various factors such as polymer molecular weight, polymer concentration and the rotating speed of the disk. The concentration dependence on the drag reduction of this polymer system was shown to obey an empirical drag reduction equation of the Virk's universal correlation.

  • PDF

Performance Analysis on the Multi Stage Reheater Regeneration Cycle for Ocean Geothermal Power Generation (해양지열발전용 다단재열재생사이클 성능해석)

  • Lee, Ho Saeng;Cha, Sang Won;Jung, Young Kwon;Kim, Hyeon Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.116-121
    • /
    • 2014
  • In order to study the improvement of the multi stage regeneration cycles, muti-stage processes were applied to the cycles, respectively or together. The kinds of the cycles are multi stage reheater cycle (MS) and multi stage reheater regeneration cycle (MSR). Working fluid used was R134a and R245fa. Temperature of the heat source was $65^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$, and temperature of the heat sink was $5^{\circ}C$. Optimization simulation was conducted for improving the gross power and efficiency with multi stage reheater regeneration cycle for ocean thermal energy conversion(OTEC) with changing of a heat source, kind of the working fluid, and type of the cycle. Performance analysis of the various components was simulated by using the Aspen HYSYS for analysis of the thermodynamic cycle. R245fa shows better performance than R134a. This paper showed the most suitable working fluid with changing of a heat source and the kinds of working cycle. Compared to each other, MS showed better performance at gross power and MSR showed higher cycle efficiency.