• Title/Summary/Keyword: Ocean bottom depth

Search Result 290, Processing Time 0.027 seconds

Prediction of Cohesive Sediment Transport and Flow Resistance Around Artificial Structures of the Beolgyo Stream Estuary

  • Cho, Young-Jun;Hwang, Sung-Su;Park, Il-Heum;Choi, Yo-Han;Lee, Sang-Ho;Lee, Yeon-Gyu;Kim, Jong-Gyu;Shin, Hyun-Chool
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.167-181
    • /
    • 2010
  • To predict changes in the marine environment of the Beolgyo Stream Estuary in Jeonnam Province, South Korea, where cohesive tidal flats cover a broad area and a large bridge is under construction, this study conducted numerical simulations involving tidal flow and cohesive sediment transport. A wetting and drying (WAD) technique for tidal flats from the Princeton Ocean Model (POM) was applied to a large-scale-grid hydrodynamic module capable of evaluating the flow resistance of structures. Derivation of the eddy viscosity coefficient for wakes created by structures was accomplished through the explicit use of shear velocity and Chezy's average velocity. Furthermore, various field observations, including of tide, tidal flow, suspended sediment concentrations, bottom sediments, and water depth, were performed to verify the model and obtain input data for it. In particular, geologic parameters related to the evaluation of settling velocity and critical shear stresses for erosion and deposition were observed, and numerical tests for the representation of suspended sediment concentrations were performed to determine proper values for the empirical coefficients in the sediment transport module. According to the simulation results, the velocity variation was particularly prominent around the piers in the tidal channel. Erosion occurred mainly along the tidal channels near the piers, where bridge structures reduced the flow cross section, creating strong flow. In contrast, in the rear area of the structure, where the flow was relatively weak due to the formation of eddies, deposition and moderated erosion were predicted. In estuaries and coastal waters, changes in the flow environment caused by artificial structures can produce changes in the sedimentary environment, which in turn can affect the local marine ecosystem. The numerical model proposed in this study will enable systematic prediction of changes to flow and sedimentary environments caused by the construction of artificial structures.

The distributional characteristics of the major dissolved artificial radionuclides in the adjacent seas of Korea(I : Yellow Sea) (우리나라 주변해역 주요 인공방사성 핵종 분포 특성 (I: 황해))

  • Chung Chang Soo;Kim Young ill;Moon Deok Soo;Kim Suk Hyun;Park Jun Kun;Seo Seung Mo;Hong Gi Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.3-13
    • /
    • 2001
  • Dissolved /sup 137/Cs, /sup 239.240/Pu, /sup 238/Pu and /sup 90/Sr contents in winter and spring of the Yellow Sea were determined to describe the distribution of artificial radionuclides. Surface water samples (100 liter) were collected by using a submerged pump, and subsurface samples (>10m depth) were collected using a 10L Niskin water sampler mounted to the Rosette sampler. The levels in the surface water ranged between 1.78~3.38 mBq kg/sup -1/ for /sup 137/Cs, 2.17~13.35 μBq kg/sup -1/ for /sup 239,240/Pu, and 1.97~3.96 mBq kg/sup -1/ for /sup 90/Sr, respectively. In particular, the concentration of /sup 239.240/Pu were 1/10 of those in the vicinity of Changjiang estuary (61~83 μBq kg/sup -1/). The difference of /sup 238.240/Pu concentration between surface and bottom water was <3.0 μBq kg/sup -1/in the Yellow Sea. It suggests that in the Yellow Sea which has shallow and high suspended sediments, /sup 239.240/Pu is preferentially removed from the water columm. The water column inventory of /sup 239.240/Pu in the Yellow Sea constitute about 0.7~0.9 % of the estimated fallout input to the area. The activity ratios of /sup 239.240/Pu//sup 137/Cs and /sup 137/Cs//sup 90/Sr ranged between 0.001~0.005, 0.79~1.65, respectively, and similar to those of open ocean which global fallout is the only source of artificial radionuclides. Therefore, it suggests that most of these artificial radionuclides in the Yellow Sea may be controlled by the atmospheric input.

  • PDF

Gravity-Geologic Prediction of Bathymetry in the Drake Passage, Antarctica (Gravity-Geologic Method를 이용한 남극 드레이크 해협의 해저지형 연구)

  • 김정우;도성재;윤순옥;남상헌;진영근
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.273-284
    • /
    • 2002
  • The Gravity-Geologic Method (GGM) was implemented for bathymetric determinations in the Drake Passage, Antarctica, using global marine Free-air Gravity Anomalies (FAGA) data sets by Sandwell and Smith (1997) and local echo sounding measurements. Of the 6548 bathymetric sounding measurements, two thirds of these points were used as control depths, while the remaining values were used as checkpoints. A density contrast of 9.0 gm/㎤ was selected based on the checkpoints predictions with changes in the density contrast assumed between the seawater and ocean bottom topographic mass. Control depths from the echo soundings were used to determine regional gravity components that were removed from FAGA to estimate the gravity effects of the bathymetry. These gravity effects were converted to bathymetry by inversion. In particular, a selective merging technique was developed to effectively combine the echo sounding depths with the GGM bathymetiy to enhance high frequency components along the shipborne sounding tracklines. For the rugged bathymetry of the research area, the GGM bathymetry shows correlation coefficients (CC) of 0.91, 0.92, and 0.85 with local shipborne sounding by KORDI, GEODAS, and a global ETOPO5 model, respectively. The enhanced GGM by selective merging shows imploved CCs of 0.948 and 0.954 with GEODAS and Smith & Sandwell (1997)'s predictions with RMS differences of 449.8 and 441.3 meters. The global marine FAGA data sets and other bathymetric models ensure that the GGM can be used in conjunction with shipborne bathymetry from echo sounding to extend the coverage into the unmapped regions, which should generate better results than simply gridding the sparse data or relying upon lower resolution global data sets such as ETOPO5.

A Study on the Hydrothermal Vent in the Mariana Trench using Magnetic and Bathymetry Data (지자기자료 및 정밀해저지형자료를 이용한 마리아나 해구 해저 열수광상 연구)

  • Kim, Chang-Hwan;Kim, Ho;Jeong, Eui-Young;Park, Chan-Hong;Go, Young-Tak;Lee, Seung-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.22-40
    • /
    • 2009
  • Detailed bathymetry and magnetic survey data for NW Rota-1 and Esmeralda Bank obtained by R/V Onnuri of Korea Ocean Research & Development Institute in September 2007 were analyzed to investigate bathymetry and magnetic characteristics of the study area and to estimate the locations of possible hydrothermal vents. The shape of NW Rota-1 is corn type, and the depth of the summit is about 500 meter b.s.l. NW Rota-1 shows irregular topographic expression in the southeastern part. The shape of Esmeralda Bank is caldera type opened in the western part. The summit is very shallow, about 50 meter b.s.l. The western part of Esmeralda Bank is more steeper and topographic irregular than the eastern part, and have the valley made by erosion or collapse. The magnetic anomaly patterns of NW Rota-1 and Esmeralda Bank show low anomalies over the north and high anomalies over the south. The magnetic anomalies are steep over the summits and gently smooth over the deep bottom. The low magnetization zone occurs over the summit of NW Rota-1 and is surrounded by the high zones correlated with its crater. Two low magnetization zones are located in the summit and westside of Esmeralda Bank. The low magnetization zones of the summits of NW Rota-1 and Esmeralda Bank suggest the possible existence of hydrothermal vent.

Preliminary Results of Marine Heat Flow Measurements in the Chukchi Abyssal Plain, Arctic Ocean, and Constraints on Crustal Origin (북극 척치 해저평원의 해양지열관측 초기결과와 지각기원에 대한 의미)

  • Kim, Young-Gyun;Hong, Jong Kuk;Jin, Young Keun;Jang, Minseok;So, Byung Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.113-126
    • /
    • 2022
  • The tectonic history of the Chukchi Abyssal Plain in the Amerasia Basin, Arctic Ocean, has not been fully explored due to the harsh conditions of sea ice preventing detailed observation. Existing models of the tectonic history of the region provide contrasting interpretation of the timing of formation of the crust (Mesozoic to Cenozoic), crust type (from hyper-extended continental crust to oceanic crust), and formation process (from parallel/fan-shaped rifting to transformation faulting). To help determine the age of the oceanic crust, the geothermal gradient was measured at three stations in the south of abyssal plain at depth of 2,160-2,250 m below sea level. Heat flow measurement stations were located perpendicular to the spreading axis over a 40 km-long transect. In-situ thermal conductivity measurement, corrected by the laboratory test, gave observed marine heat flows of 55 to 61 mW/m2. All measurements were taken during Arctic expeditions in 2018 (ARA09C expedition) and 2021 (ARA12C expedition) by the Korean ice-breaking research vessel (IBRV) Araon. Given the assumption of oceanic crust, the results correspond to formation in the Late Cretaceous (Mesozoic). The inferred age supports the hypothesis of formation activated by the opening of the Makarov Basin during the Late Mesozoic-Cenozoic. This would make it contemporaneous with rifting of the Chukchi Border Land immediately east of the abyssal plain. The heat flow data indicate the base of the gas hydrate stability zone is located 332-367 m below the seafloor, this will help to identify the gas hydrate-related bottom simulating reflector in the future seismic survey, as already identified on the Chukchi Plateau. Further geophysical surveys, including heat flow measurements, are required to increase our understanding of the formation process and thermal mantle structure of the abyssal plain.

Community Structure of Macrobenthic Assemblages near Uljin Marine Ranching Area, East Sea of Korea (울진 바다목장 주변해역 연성기질 조하대에 서식하는 대형저서동물의 군집구조)

  • Hwang, Kangseok;Seo, In-Soo;Choi, Byoung-Mi;Lee, Han Na;Oh, Chul Woong;Kim, Mi Hyang;Choi, Chang Gun;Na, Jong Hun
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.286-296
    • /
    • 2014
  • In this study, we investigated the macrobenthic community structure and spatiotemporal variations in Uljin Marine Ranching area, East Sea of Korea. Macrobenthos were collected using a modified van Veen grab sampler from April to September 2013. Total number of species sampled was 345 and mean density was 5,797 ind. $m^{-2}$, both of which were dominated by the polychaetes. The most dominant species were Spiophanes bombyx (53.64%), followed by Magelona sp.1 (6.96%), Cadella semitorta (2.73%), Lumbrineris longifolia (2.16%) and Alvenius ojianus (2.08%). Cluster analysis and nMDS ordination analysis based on the Bray-Curtis similarity identified 2 station groups. The group 1 (station 2, 3, 5, 6, 8 and 9) was characterized by high abundance of the polychaetes Magelona sp.1, Lumbrineris longifolia, Scoloplos armiger, Praxillella affinis, Maldane cristata and the bivalve Alvenius ojianus, with fine sediment above 30m water depth. On the other hand, the group 2 (station 1, 4, 7 and 10) was numerically dominated by the polychaete Lumbrineriopsis sp. and the bivalve Cadella semitorta, with coarse sediment below 5m water depth. Collectively, the macrobenthic community structure showed a distinct spatial trend, which seemed to be related to the water depth and sediment composition.

Specific Absorption Coefficients for the Chlorophyll and Suspended Sediment in the Yellow and Mediterranean Sea (황해와 지중해에서의 클로로필 및 부유입자의 비흡광계수 연구)

  • 안유환;문정언
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.353-365
    • /
    • 1998
  • Light absorption coefficient per unit mass of particles, i.e., specific absorption coefficient, is important as one of the main parameters in developing algorithms for ocean color remote sensing. Specific absorption coefficient of chlorophyll ($a^*_{ph}$) and suspended sediment ($a^*_{ss}$) were analyzed with a spectrophotometer using the "wet filter technique" and "Kishino method" for the seawater collected in the Yellow and Mediterranean Sea. An improved data-recovery method for the filter technique was also developed using spectrum slopes. This method recovered the baselines of spectrum that were often altered in the original methods. High $a^*_{ph}({lambda})$ values in the oligotrophic Mediterranean Sea and low values in the Yellow Sea were observed, ranging 0.01 to 0.12 $m^2$/mg at the chlorophyll maximum absorption wavelength of 440 nm. The empirical relationship between $a^*_{ph}$(440nm) and chlorophyll concentrations () was found to fit a power function ($a^*_{ph}$=0.039 $^{-0.369}$), which was similar to Bricaud et al. (1995). Absorption specific coefficients for suspended sediment ($a^*_{ss}$) did not show any relationship with concentrations of suspended sediment. However, an average value of $a^*_{ss}$ ranging 0.005 - 0.08 $m^2$/g at 440nm, was comparable to the specific absorption coefficient of soil (loess) measured by Ahn (1990). The morepronounced variability of $a^*_{ss}$ than $a^*_{ph}$ was determined from the variable mixing ratio values between particulate organic matter and mineral. It can also be explained by a wide size-distribution range for SS which were determined by their specific gravity, bottom state, depth and agitation of water mass by wind in the sea surface.

An analysis of horizontal deformation of a pile in soil using a beam-on-spring model for the prediction of the eigenfrequency of the offshore wind turbine (해상풍력터빈의 고유진동수 예측을 위한 지반에 인입된 파일의 탄성지지보 모델 기반 수평 거동 해석)

  • Ryue, Jungsoo;Baik, Kyungmin;Kim, Tae-Ryong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.261-271
    • /
    • 2016
  • In the prediction of response of a pile in soil, numerical approaches such as a finite element method are generally applied due to complicate nonlinear behaviors of soils. However, the numerical methods based on the finite elements require heavy efforts in pile and soil modelling and also take long computing time. So their usage is limited especially in the early design stage in which principal dimensions and properties are not specified and tend to vary. On the contrary, theoretical approaches adopting linear approximations for soils are relatively simple and easy to model and take short computing time. Therefore, if they are validated to be reliable, they would be applicable in predicting responses of a pile in soil, particularly in early design stage. In case of wind turbines regarded in this study, it is required to assess their natural frequencies in early stages, and in this simulation the supporting pile inserted in soil could be replaced with a simplified elastic boundary condition at the bottom end of the wind turbine tower. To do this, analysis for a pile in soil is performed in this study to extract the spring constants at the top end of the pile. The pile in soil can be modelled as a beam on elastic spring by assuming that the soils deform within an elastic range. In this study, it is attempted to predict pile deformations and influence factors for lateral loads by means of the beam-on-spring model. As two example supporting structures for wind turbines, mono pile and suction pile models with different diameters are examined by evaluating their influence factors and validated by comparing them with those reported in literature. In addition, the deflection profiles along the depth and spring constants at the top end of the piles are compared to assess their supporting features.

Distribution of Nutrients and Chlorophyll α in the Surface Water of the East Sea (동해 표층수 중 영양염과 Chlorophyll α의 분포 특성)

  • Yoon, Sang Chol;Yoon, Yi Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.2
    • /
    • pp.87-98
    • /
    • 2016
  • During the period between July 3 and 27 of 2009, water samples were collected from the Russian coast at a depth of 30m from 26 stations (including Ulleung and Japan basins) onboard the Russian survey vessel R/V Lavrentyev following 4 lines (D, R, E, and A). The samples were analyzed for nutrients and chlorophyll a contents. All parameters exhibited higher values in warm waters than in cold waters ($NH_4:1.8-fold$, $PO_4:1.8-fold$, $SiO_2:1.2-fold$, and chlorophyll-${\alpha}$:1.9-fold), except nitrates, which was 1.4-fold higher in cold waters than in warm waters. The horizontal distribution of ammonia, phosphate, and chlorophyll-${\alpha}$ was very similar to each other and showed the highest values in the waters near Russia, where a upwelling influence of cold current and bottom water prevails, while relatively low distribution was observed at the Ulleung Basin. On the other hand, nitrates showed the highest concentration at the Ulleung Basin, which is under the direct influence of the Tsushima warm water, and showed a gradual decrease northward. The N/P ratio showed the highest value in the Tsushima middle water, rather than in the North Korean Cold Water, the Tsushima Warm Water was the primary source of nitrate flow into the East Sea. However, the average concentration of phosphate in the warm waters was < $0.2{\mu}M$, thereby limiting phytoplankton growth, while a high concentration of phosphate in cold waters showed a direct correlation with chlorophyll-${\alpha}$. The results of principal component analysis for the identification of primary factors that influence the marine environment showed that principal component I was water temperature and principal component II was influenced chlorophyll-${\alpha}$ and nutrients. Therefore, Study area has greatest influenced by water temperature, and clearly distinct cold and warm water regions were observed in the East Sea.

Summer-Time Behaviour and Flux of Suspended Sediments at the Entrance to Semi-Closed Hampyung Bay, Southwestern Coast of Korea (만 입구에서 부유퇴적물 거동과 플럭스: 한반도 서해 남부 함평만의 여름철 특성)

  • Lee, Hee-Jun;Park, Eun-Sun;Lee, Yeon-Gyu;Jeong, Kap-Sik;Chu, Yong-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 2000
  • Anchored measurements (12.5 hr) of suspended sediment concentration and other hydrodynamic parameters were carried out at two stations located at the entrance to Hampyung Bay in summer (August 1999). Tidal variations in water temperature and salinity were in the range of 26.0-27.9$^{\circ}C$ and 30.9-31.5, respectively, indicating exchange offshore and offshore water mass. Active tidal mixing processes at the entrance appear to destroy the otherwise vertical stratification in temperature and salinity in spite of strong solar heating in summer. On the contrary, suspended sediment concentrations show a marked stratification with increasing concentrations toward bottom layer. Clastic particles in suspended sediments consist mostly of very fine to fine silt (4-16 ${\mu}$m) with a poorly-sorted value of 14.7-25.9 ${\mu}$m. However, at slack time with less turbulent energy, flocs larger than 40 ${\mu}$m are formed by cohesion and inter-collision of particles, resulting in a higher settling velocity. Strong ebb-dominated and weak flood dominated tidal currents, in the southwestern and the northeastern part, respectively, result in a seaward residual flow of -10${\sim}$-20 cm $s^{-1}$ at station H1 and a bayward residual flow less than 5.0 cm $s^{-1}$ at station H2. However, mean concentration of suspended sediments at station H1 is higher at flood (95.0-144.1 mg $1^{-1}$) than in ebb (75.8-120.9 mg $1^{-1}$). On the contrary, at the station H2, the trend is reversed with higher concentration at the ebb (84.7-158.4 mg $1^{-1}$) than that at the flood (53.0-107.9 mg $1^{-1}$). As a result, seaward net suspended sediment fluxes ($f_{s}$) are calculated to be -1.7 ${\sim}$-$15.610^{3}$ kg $m^{-2}$ $s^{-1}$ through the whole water column. However, the stations H1 and H2 show definitely different values of the flux with higher ones in the former than in the latter. Alternatively, depth-integrated net suspended sediment loads ($\c{Q}_{s}$) for one tidal cycle are also toward the offshore with ranges of 0.37${\times}$$10^{3}$ kg $m^{-1}$ and 0.21${\times}$$10^{3}$ kg $m^{-1}$, at station H1 and H2, respectively. This seaward transport of suspended sediment in summer suggests that summer-time erosion in the Hampyung muddy tidal flats is a rather exceptional phenomenon compared to the general deposition reported for many other tidal flats on the west coast of Korea.

  • PDF