• Title/Summary/Keyword: Ocean and Harbor

Search Result 497, Processing Time 0.037 seconds

A Study on the Analysis of Water Waves and Harbor Oscillations due to the Development of Pusan Harbor (부산권개발에 따른 파괴분석과 해면부진동에 관한 연구)

  • 이중우;김지연
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.25-34
    • /
    • 1991
  • An accurate estimation of water level variation when thewaves propagate to the coastal regionis very important for the port and harbor development plan. This study describes the application of a hybrid element model to harbor oscillation problem due to the construction of shore structure and implementation of shore boundary. The site selected is Pusan Harbor area with the third development and the Artificial Island plan. The observed water level changes at the site are compared with the result of the numerical experiment. The model gives a very important prediction of water level changes for navigation and harbor design.

  • PDF

Evaluation of the Harbor Operation Rate Considering Long Period Waves (장주기파를 고려한 항만 가동율의 평가)

  • 김규한
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.21-26
    • /
    • 2002
  • In this study, the characteristics of long period waves are analyzed by field observation at Sokcho harbor on the eastern coast of Korea. firstly. the pressure data obtained from field observation are transformed into water surface elevations and the wave by wave analysis is applied to the observed wave data. also, we select long period waves by setting up the range 30-200sec, and suggest the relationship between ordinary waves and long period waves using the concept of the significant wave height. and, we examine the effects oft he long period waves on the rate of the harbor operation. The observation results demonstrate that the long period waves with heights of 1.2-14.6cm and periods of 35.8-162sec exist at Sokcho harbor. also, we found the rates of harbor operation based on long period waves are 61.8%-99.5% lower than the usual rates of 93.8%-100%.

An Analysis of Wave Height Distribution in the Vicinity of Samcheon New-Harbor (삼천포 신항의 파고분포 해석)

  • Jang, Dae-Jeong;Ham, Gye-Un
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • The calmness inside a harbor plays an important role in the appropriate disposition of harbor structures. However, it is not easy to acquire accurate computational results because these are affected by many factors concerned with wave transformation. Recently, numerical model tests, which are quicker and more economical than hydraulic model experiments, were carried out for the purpose of analyzing wave height distributions in harbors. This paper presents a numerical model that is able to calculate wave heights inside a harbor. It is based on a time-dependent mild slope involving wave refraction, diffraction, shoaling effect, and reflection. In particular, arbitrary reflectivity is used at the boundary in order to simulate the real harbor reflection condition. The proposed numerical model is applied to Samcheon new-harbor in order to investigate harbor calmness.

Analysis on the Characteristics of the Infra-Gravity Waves inside and outside Pohang New Harbor using a Transfer Function Model (전달함수 모형을 이용한 포항신항 내·외의 외중력파 특성 분석)

  • Cho, Hong-Yeon;Jeong, Weon Mu;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.131-139
    • /
    • 2014
  • Infra-gravity waves (IGWs) with a period of 1~3 minutes are a factor that directly influences the motion analysis of moored ships inside a harbor and longshore sediment transport analysis. If significant levels of IGWs from far seas are transferred to a harbor and amplified, they may cause downtime of large ships and induce economic loss. In this study, transfer characteristics of the IGWs intruding from outside to inside Pohang New Harbor were analyzed using statistical analysis and transfer function of wave data measured at both outside and inside the harbor for around 5 years. Transfer characteristic analysis was limited to events where IGWs had wave heights above 0.1 m. The wave height distribution of inside the harbor was similar to that of outside the harbor, while the wave period variance of the former was larger than that of the latter. The parameters of the transfer function was optimally estimated according to each event. The estimated average RMS error of the wave height inside the harbor was around 0.013 m. The estimated parameters had a strong correlation with the linear combination information of IGW wave height, period, and direction (R = 0.95). The transfer function suggested in this study can quickly and easily estimate information on IGWs inside the harbor using IGW information predicted beforehand, and is expected to reduce damage due to unexpected restrictions on harbor usage.

Hydrodynamic Interaction Analysis of Floating Multi-body System

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook;Kim, Young-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.198-204
    • /
    • 2011
  • Recently, several problems have occurred in the space, infra-structure, and facility of the contiguity of existing harbors due to the trend of enlarged container vessels. In this regard, the Mobile Harbor has been proposed conceptually in this study as an effective solution for these problems. The concept is that of a transfer loader that transfers containers from a large container ship to the harbor on land, and is a catamaran type floating barge. The catamaran-type vessel is well known for its advantage in maneuverability, resistance, and effectiveness for working on board. For the safe and effective operation of the two floating bodies (a container ship and the mobile harbor in the near sea detached from the quay), robot arms, novel crane systems, and pneumatic fenders are specially devised with an additional mooring facility or DP (dynamic positioning) system. In this study, this concept is to be verified through comparison and simulation studies under various environmental conditions. It is shown that the proposed concept is in general feasible but there are several areas for further investigation and improvement.

Estimation of Optimum Tug Capacity for VLCC and Its Application to VLCC Terminal in Gwang-Yang Harbor

  • In-Yong GONG;Lee, Chang-Min;Chan-Su-YANG;Lee, Han-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.3-13
    • /
    • 2004
  • The total tug capacity needed for berthing/de-berthing operations of a ship may vary depending on the ship type, size, loading conditions, and environmental circumstances. Traditionally, total tug capacity is determined based on the local guidelines of port authorities or on the rule of thumb. However, the social demands for the enhancement of ship safety at harbor and the economical demands for the cost-effectiveness of tug usage makes it necessary for port authorities to develop more reasonable and detailed guidelines on tug usage which takes various conditions into account. In this paper, the method to estimate the optimum tug capacity of VLCC is suggested by considering various ship conditions such as its size, loading conditions, and environmental circumstances such as wind, wave, tidal currents, and geographical characteristics of a terminal. This method is applied to a VLCC terminal located in Gwang-Yang Harbor of Korea and the results are compared with the local guidelines of the harbor, which shows that there may be a room for the amendment of local guidelines on tug usage.

  • PDF

A Fusion Positioning System of Long Baseline and Pressure Sensor for Ship and Harbor Inspection ROV

  • Seo, Dong-Cheol;Lee, Yong-Hee;Jo, Gyung-Nam;Choi, Hang-Shoon
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.36-46
    • /
    • 2007
  • The maintenance of a ship is essential for safe navigation and hence regular surveys are prescribed according to the rule of classification societies. A hull inspection is generally performed by professional divers, but it takes a long time and the efficiency is low in terms of time and cost. In this research, a ROV(Remotely Operated Vehicle) named as SNU-ROV(Seoul National University-ROV) is developed to replace the conventional inspection method. In this system, the ROV is intended to be used for inspecting ship and harbor because harbor inspection is merging as a safety measure against any possible terror actions. In order to increase the efficiency of inspection, the ROV must be able to measure the exact position of damages. SNU-ROV has a positioning system based on LBL(Long Base Line). In shallow water such as harbor, however, LBL has bad DOP(Dilution of Precision) in the depth direction due to the limited depth. Thus LBL only can not locate the exact depth position. To solve the DOP problem, a pressure sensor is introduced to LBL and a complementary filter is attached by using indirect feedback Kalman filter. Thus developed positioning system is verified by simulation and experiment in towing tank.

Wave Response and Ship Motion in a Harbor Excited by Long Waves

  • Cho, Il-Hyoung;Choi, Hang-S.
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.47-62
    • /
    • 1994
  • Herein the surge-heave-pitch motion of a ship in harbor has been analyzed within the framework of linear potential theory. The ship is assumed to be slender and moored at an arbitrary position in a rectangular harbor with a constant depth. The coast line is assumed to be straight. The ship and harbor responses to incident long waves are represented in terms of Green's function, which is the solution of tole Helmholtz equation satisfying necessary boundary conditions. An integral equation is obtained from matching condition between harbor and ocean solutions, and it is replaced by an equivalent variational form. Numerical results sallow that the ship motion can be highly amplified at the frequencies, where the harbor is resonated by the incident wave. At the resonant frequencies, the added mass for vertical motions becomes negative and the damping forte changes abruptly.

  • PDF

Conceptual Design of SMART HARBOR (스마트 하버의 개념설계)

  • Shin, Hyun-Kyoung;Kim, Min-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.84-92
    • /
    • 2011
  • This paper presents the primary conceptual design results of Smart Harbor. As the world trade becomes active, so container cargo volume is increasing constantly. Since the coming of very large container ships, It's necessary that a harbor handles many containers more than before. Therefore, we designed the new concept of SMART HARBOR which overcomes land site problem for port expansion and geographic constraints of very large container ships in harbor.