• Title/Summary/Keyword: Ocean Thermal Energy

Search Result 164, Processing Time 0.023 seconds

Comparison of Two Methods for Estimating the Appearance Probability of Seawater Temperature Difference for the Development of Ocean Thermal Energy (해양온도차에너지 개발을 위한 해수온도차 출현확률 산정 방법 비교)

  • Yoon, Dong-Young;Choi, Hyun-Woo;Lee, Kwang-Soo;Park, Jin-Soon;Kim, Kye-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.2
    • /
    • pp.94-106
    • /
    • 2010
  • Understanding of the amount of energy resources and site selection are required prior to develop Ocean Thermal Energy (OTE). It is necessary to calculate the appearance probability of difference of seawater temperature(${\Delta}T$) between sea surface layer and underwater layers. This research mainly aimed to calculate the appearance probability of ${\Delta}T$ using frequency analysis(FA) and harmonic analysis(HA), and compare the advantages and weaknesses of those methods which has used in the South Sea of Korea. Spatial scale for comparison of two methods was divided into local and global scales related to the estimation of energy resources amount and site selection. In global scale, the Probability Differences(PD) of calculated ${\Delta}T$ from using both methods were created as spatial distribution maps, and compared areas of PD. In local scale, both methods were compared with not only the results of PD at the region of highest probability but also bimonthly probabilities in the regions of highest and lowest PD. Basically, the strong relationship(pearson r=0.96, ${\alpha}$=0.05) between probabilities of two methods showed the usefulness of both methods. In global scale, the area of PD more than 10% was less than 5% of the whole area, which means both methods can be applied to estimate the amount of OTE resources. However, in practice, HA method was considered as a more pragmatic method due to its capability of calculating under various ${\Delta}T$ conditions. In local scale, there was no significant difference between the high probability areas by both methods, showing difference under 5%. However, while FA could detect the whole range of probability, HA had a disadvantage of inability of detecting probability less than 10%. Therefore it was analyzed that the HA is more suitable to estimate the amount of energy resources, and FA is more suitable to select the site for OTE development.

Numerical and Experimental Study on Motion Response of 1MW OTEC Platform (1MW OTEC 구조물의 운동 응답에 대한 수치 및 모형시험 연구)

  • Kwon, Yong-Ju;Nam, Bo Woo;Kim, Namwoo;Jung, Dong-Ho;Hong, Sa Young;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • The 1MW OTEC (Ocean Thermal Energy Conversion) platform was designed for application in equatorial seas. In this study, the OTEC platform was investigated using numerical and experimental methods. An octagon-shaped OTEC platform was investigated using the Ocean Engineering Basin of KRISO. These experiments included various tests of regular waves, irregular waves and irregular waves with current (wave+current). The responses of the platform in regular waves showed good agreement between the numerical and experimental results, including the motion RAO, wave run up, and mean drift force. The peak period of heave and pitch motions were observed around 0.5 rad/s, and the effect of the total reflection was found under short wave conditions. The standard deviation (STD) of the platform motion was checked in irregular waves of equatorial and Hawaiian seas. The STD of the pitch was less than $4^{\circ}$ different from the operability requirement under equatorial conditions and the surge STD of the wave frequency showed good agreement between the numerical and experimental results. The STD values of the surge and pitch were increased 66.6% and 92.8% by the current effects in irregular waves, but the pitch STD was less than $4^{\circ}$ under equatorial conditions. This study showed that the STD of the surge was affected by spring effects. Thus, the watch circle of the platform and tension of the mooring lines must be evaluated for a specific design in the future.

A Study of Ocean Thermal Energy Conversion Systems Using Kalina cycle and Regenerative Rankine cycle (Kalina 사이클과 재생 Rankine 사이클을 이용한 해양 온도차 발진 시스템)

  • Shin, S.H.;Jung, D.S.;Kim, C.B.;Seo, T.B.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.101-113
    • /
    • 1999
  • Thermodynamic performance of a simple Rankine cycle, regenerative Rankine cycle, and Kalina cycle for Ocean thermal Energy Conversion(OTEC) is evaluated under the same condition with various working fluids. The evaporator and condenser are modeled by a UA and LMTD method while the turbine and pump are modeled by considering isentropic efficiencies. As for the working fluids, R22, R134a, R32, propylene, ammonia are used for the Rankine cycles while ammonia/water and R32/R134a mixtures are used for Kalina cycle. Calculated results show that newly developed fluids such non-ozone depleting refrigerants as R134a and R32 perform as well as R22 and ammonia. The regenerative Rankine cycle showed a 1.2 to 2.8% increase in energy efficiency as compared to the simple Rankine cycle while the Kalina cycle with ammonia/water mixture showed a 1.8% increase in energy efficiency. The efficiency of the Kalina cycle with R32/R134a mixtures is the same as that of a simple Rankine cycle using R22. Therefore, the regenerative Rankine cycle turns out to be best choice for OTEC applications.

  • PDF

Development of dynamic motion models of SPACE code for ocean nuclear reactor analysis

  • Kim, Byoung Jae;Lee, Seung Wook
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.888-895
    • /
    • 2022
  • Lately, ocean nuclear power plants have attracted attention as one of diverse uses of nuclear power plants. Because ocean nuclear power plants are movable or transportable, it is necessary to analyze the thermal hydraulics in a moving frame of reference, and computer codes have been developed to predict thermal hydraulics in large moving systems. The purpose of this study is to incorporate a three dimensional dynamic motion model into the SPACE code (Safety and Performance Analysis CodE) so that the code is able to analyze thermal hydraulics in an ocean nuclear power plant. A rotation system that describes three-dimensional rotations about an arbitrary axis was implemented, and modifications were made to the one-dimensional momentum equations to reflect the rectilinear and rotational acceleration effects. To demonstrate the code's ability to solve a problem utilizing a rotational frame of reference, code calculations were conducted on various conceptual problems in the two-dimensional and three-dimensional pipeline loops. In particular, the code results for the three-dimensional pipeline loop with a tilted rotation axis agreed well with the multi-dimensional CFD results.

Analytical study of house wall and air temperature transients under on-off and proportional control for different wall type

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.1
    • /
    • pp.70-81
    • /
    • 2010
  • A mathematical model is formulated to study the effect of wall mass on the thermal performance of four different houses of different construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one -dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. These discrete data are then converted to a continuous, time dependent form using a Fast Fourier Transform method. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. A computer code is developed to calculate the wall temperature profile, room air temperature, and energy consumption loads. Three sets of results are calculated one for no auxiliary energy and two for different control mechanism -- an on-off controller and a proportional controller. Comparisons are made for the cases of two controllers. Heavy weight houses with insulation in mild weather areas (such as August in Santa Maria, California) show a high comfort level. Houses using proportional control experience a higher comfort level in comparison to houses using on-off control. The result shows that there is an effect of mass on the thermal performance of a heavily constructed house in mild weather conditions.

The study of the calculation of energy consumption load for heating and cooling in building using the Laplace Transform solution

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.3
    • /
    • pp.292-300
    • /
    • 2014
  • The Laplace Transform solution is used as a mathematical model to analyse the thermal performance of the building constructed using different wall materials. The solution obtained from Laplace Transform is an analytical solution of an one dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures. The main purpose of the study is showing the detail of obtaining solution process of the Laplace Transform. This study is conducted using weather data from two different locations in Korea: Seoul, Busan for both winter and summer conditions. A comparison is made for the cases of an on-off controller and a proportional controller. The weather data are processed to yield hourly average monthly values. Energy consumption load is well calculated from the solution. The result shows that there is an effect of mass on the thermal performance of heavily constructed house in mild weather conditions such as Busan. Building using proportional control experience a higher comfort level in a comparison of building using on-off control.

Thermal load analysis of tank culture system for applying seawater source heat pump (육상 수조식 양식장의 해수 열원 히트펌프 시스템 적용을 위한 열부하 분석)

  • Min-Gi YOON;Tae-Hoon KIM;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • This study deals with the maximum thermal load analysis and optimal capacity determination method of tank culture system for applying seawater source heat pump to save energy and realize zero energy. The location of the fish farm was divided into four sea areas, and the heat load in summer and winter was analyzed, respectively. In addition, two representative methods, the flow-through aquaculture system and the recirculation aquaculture system were reviewed as water treatment methods for fish farms. In addition, the concept of the exchange rate was introduced to obtain the maximum heat load of the fish farms. Finally, power consumption for heat pumps was analyzed in the view point of sea areas, tank capacity, and exchange rate based on the calculated maximum thermal load.

The Equations of Motion for the Stretcthing, Bending and Twisting of a Marine Pipeline Containing Flowing Fluids (내부 유체 유동을 포함한 해저 파이프 라인의 인장 굽힘 비틀림 운동 방정식)

  • 서영태
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.151-156
    • /
    • 1994
  • The equations of motion of a submarine pipeline with the internal flowing fluid and subject to hydrodynamic loadings are derived by using Hamilton's principle. Coupling between the bending and the longitudinal extension due to axial load and thermal expansion are considered. Coupling between the twisting and extension are not considered. The equations of motion are well agreed with the results which are derived by the vector method.

  • PDF

Performance Analysis of Closed-type OTEC Cycle using Waste Heat (폐열 이용 폐쇄형 해양온도차발전 사이클의 성능)

  • Lee, Ho-Saeng;Jung, Dong-Ho;Hong, Seok-Won;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.80-84
    • /
    • 2011
  • The cycle performance of closed ocean thermal energy conversion (OTEC) system with 50 kW gross power was evaluated to obtain the basic data for the optimal design of OTEC using waste heat such as solar power, discharged heat from condenser of power plant. The basic thermodynamic model for OTEC is Rankine cycle, and the surface seawater and deep seawater were used for the heat source of evaporator and condenser, respectively. The cycle performance such as efficiency, heat exchanger capacity, etc. was analyzed on the variation of temperature increase by waste heat. The cycle efficiency increased and necessary capacity of evaporator and condenser decreased under 50kW gross power with respect to the temperature increase of working fluid. Also, when the temperature increase is about $13.5^{\circ}C$, the heat which can be used is generated. By generator with 0.9 effectiveness under the simulated condition, the cycle efficiency was improved approximately 3.0% comparing with the basic cycle.

Thermal Analysis of Mg2Cu Hydride (Mg2 hydride의 열분석)

  • Han, Jeong-Seb
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • The desorption kinetics of $Mg_2Cu$ hydride were studied by thermal analysis technique in order to study desorption behavior and to relate thermal desorpton spectra to occuption site of hydrogen. It is suggested that a continuous ${\alpha}/{\beta}$ interface boundary is formed at the initial absorption stage. And the desorption kinetics were analysed by the theoretical equation which was derived on the basis of continous moving boundary model. The number of thermal desorption peak corresponds to the occupation sites of hydrogen. The apparent activation energy for the desorption of $Mg_2Cu$ hydride is 91 KJ/mol.

  • PDF