• 제목/요약/키워드: Ocean Industry

검색결과 1,281건 처리시간 0.028초

해양 심층수를 이용한 미네랄소금 제염장치 개발 (Development of for Mineral Salt Manufacturing System using Deep Sea Water)

  • 김현주;신필권;문덕수;정동호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.183-189
    • /
    • 2004
  • Deep ocean water is located in the sea deeper than 200m. At such depth the solar light does not reach, photosynthesis is not performed and nutrition salt is not consumed. Therefore, campared with surface water, Deep Sea Water contains more nutrition salt, such as nitrogen and phosphor. Moreover, it has the good balance of minerals. This Research is primary attempt for apply deep sea water to food industry. New type of mineral salt manufacturing system was developed and high levels of Ca, K, Mg detected from the salt analysis.

  • PDF

A Study on Statistical Analysis of Local Ice Loads Measured during the Arctic Voyage of the IBRV ARAON

  • Kwon, Yong-Hyeon;Choi, Kyungsik;Lee, Tak-Kee
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권3호
    • /
    • pp.186-197
    • /
    • 2015
  • In summer 2010, field measurements of local ice loads were carried out in the Arctic Ocean using the Korean first icebreaking research vessel, ARAON. In some previous studies by the authors, several investigations for the data measured at 2010 including the relationship between the measuring points and ice loads, the possibility for observation of higher ice load and the relationship between the ship speed and ice loads were reported. During 10 days in August 2013, new field measurements were performed in similar waters of the Arctic Ocean using the same vessel, ARAON. The aim of this study is to investigate the statistical properties of 2013 measurements and compare results by two periods.

Review on Applications of Machine Learning in Coastal and Ocean Engineering

  • Kim, Taeyoon;Lee, Woo-Dong
    • 한국해양공학회지
    • /
    • 제36권3호
    • /
    • pp.194-210
    • /
    • 2022
  • Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered.

Spatial Scheduling in Shipbuilding Industry

  • Duck Young Yoon;Varghese Ranjan;Koo Chung Kon
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.106-110
    • /
    • 2004
  • In any large heavy industry like that of ship building, there exist a lot of complications for the arrangement of building blocks optimally for the minimal space consumption. The major problem arises at yard because of laxity in space for arranging the building blocks of ship under construction. A standardized erection sequence diagram is generally available to provide the prioritised erection sequence. This erection sequence diagram serves as the frame work. In order to make a timely erection of the blocks a post plan has to be developed so that the blocks lie in the nearest possible vicinity of the material handling devices while keeping the priority of erection. Therefore, the blocks are arranged in the pre-erection area. This kind of readiness of blocks leads to a very complex problem of space. This arises due to the least available space leading to an urgent need of an availability of intelligent spatial schedule without compromising the rate of production. There exists two critical problems ahead namely, the spatial occupation layout of pre-erection area and the emptying pattern in the spatial vicinity. The block shape is assumed be rectangular. The related input data's are the dates of erection (earliest as well as the latest), geometrical parameters of block available on pre-erection area, slack time and the like.

  • PDF

사각기둥의 전면 부가구조물 설치로 인한 입사붕괴파의 충격력 완화 효과 (Mitigation Effects of Incident Bore Impact Loads Acting on a Tall Structure by Installation of Obstacles)

  • 이병혁;황성철;박종천
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.93-101
    • /
    • 2013
  • The incident bore impact loads acting on a tall structure is simulated using the refined Moving Particle Simulation (MPS) method. The particle method is more feasible and effective than conventional grid-based methods for the violent free-surface problems. In the present study, the simulation results for the temporal change of the hydrodynamic force on the structure and longitudinal velocity component around the structure are compared with the experiments (Radd and Bidoae, 2005). And the mitigation effects by installation of various obstacles in front of the main structure are investigated and discussed form the simulation results.

포아송 회귀분석을 이용한 해운선사의 블랭크 세일링 영향 분석 연구 (A study on the impact analysis of blank sailing in the shipping industry using poisson regression analysis)

  • 류원형;최봉근;김정훈;박신우;남형식
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 추계학술대회
    • /
    • pp.120-121
    • /
    • 2023
  • 최근에 해운산업의 수요와 공급이 지속적으로 일치하지 않으면서 불균형 현상이 이어지고 있다. 이에 따라 해운선사들은 선박의 공급량을 조절하기 위해 블랭크 세일링을 실시하며 수요와 공급의 균형을 맞추고 있다. 블랭크 세일링은 화물 운송을 지연시키는 부정적인 연쇄효과를 발생시키기 때문에 본 연구에서는 포아송 회귀분석을 이용하여

  • PDF

부력엔진 독립시험 모듈 해양공학수조 시험 (Buoyancy Engine Independent Test Module Test in the Ocean Engineering Basin)

  • 이종무;김형우;정태환
    • 한국산업융합학회 논문집
    • /
    • 제26권6_2호
    • /
    • pp.1155-1162
    • /
    • 2023
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO), which is developing the core technology for the buoyancy engine of underwater gliders, has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module was tested in a 15 metre deep pit in the Ocean Engineering Basin to verify its ability to ascend and descend. In order to test at a shallower depth than the real sea, it was necessary to know the negative buoyancy value during descent and the time at which the buoyancy engine would be activated. To do this, we solved the equation of motion in the vertical direction to obtain these values and applied them to the tank test. To validate the usefulness of solving the equation, we also compared the depth of descent over time measured in the test with the results calculated from the solution.

글로벌 공급망 재편에 따른 한국 항만업의 경기 변화 (Changes in the Korea's port industry due to global supply chain reorganization)

  • 김성은;정수빈;장정인
    • 아태비즈니스연구
    • /
    • 제15권2호
    • /
    • pp.257-270
    • /
    • 2024
  • Purpose - The purpose of this study is to analyze the changes in the business environment, business conditions, and detailed indicators related to management of Korea's port industry companies as global supply chains have been reorganized since the shock of COVID-19 in 2020 and uncertainties in the global economy have expanded. Design/methodology/approach - This study use the business survey index of the port industry to analyze. It is a weighted BSI with the weight of workers applied. Findings - Since 2020 the BSI in the port industry including business conditions, sales unit price, profitability, and financial conditions fluctuated, but it has been generally above normal level(100). During the analysis period, the BSI for export sales was found to be better than that of domestic sales. Employment BSI was generally stable, and in the case of facility BSI, the port industry was shown to be very active in facility investment. Research implications or Originality - First, it is necessary to make manpower training systems to cultivate experts in the port industry to cope with uncertainties caused by the rapidly changing global economy and the global supply chain environment. Second, it is necessary to support for investment in technology and facilities for automation and smartization. Finally, it is necessary to establish a continuous monitoring system for the business conditions.

Current Measurement and Velocity Spatial Distribution of Deep Ocean Engineering Basin

  • Jung, Sung-Jun;Jung, Jae-Sang;Lee, Yong-Guk;Park, Byeong-Won;Hwang, Sung-Chul;Park, In-Bo;Kim, Jin-Ha;Park, Il-Ryong
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.150-160
    • /
    • 2021
  • To ensure the international competitiveness of the domestic offshore plant industry, a consensus has been formed regarding the requirement for large offshore basins for performing offshore plant performance verification. Accordingly, the Korea Research Institute of Ships & Ocean Engineering has built the world's largest deep ocean engineering basin (DOEB). The purpose of this study is to evaluate the characteristics of velocity distribution under various conditions of the DOEB. An independent measuring jig is designed and manufactured to measure the current velocities of many locations within a short time. The measurement jig is a 15-m-high triangular-truss structure, and the measurement sensors can move 15 m vertically through an electric motor-wire device. The current speed is measured under various impeller revolutions per minute and locations of the DOEB using the jig. The spatial distribution characteristics of the current velocity in the DOEB and the performance of the current generator are analyzed. The maximum speed is 0.56 m/s in the center of the DOEB water surface, thereby confirming sufficient current velocity distribution uniformity for model testing.