• Title/Summary/Keyword: Ocean Chlorophyll 4(OC4)

Search Result 16, Processing Time 0.031 seconds

Characteristic Response of the OSMI Bands to Estimate Chlorophyll $\alpha$ (클로로필 $\alpha$ 추정시 OSMI 밴드의 광학 반응 특성)

  • 서영상;이나경;장이현;황재동;유신재;임효숙
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.187-199
    • /
    • 2002
  • Correlation between chlorophyll a in the East China Sea and spectral bands (412, 443, 490, (510), 555, (676, 765)nm) of Ocean Scanning Multi-Spectral Imager (OSMI) including the profile multi-spectral radiometer (PRR-800) was studied. The values of remote sensing reflectance (Rrs) at the bands corresponding to the field chlorophyll $\alpha$ in the East China Sea were much higher than those in clear waters off California, USA. In case of the particle absorptions related to the chlorophyll a concentration at the spectral bands (440, 670nm) were much higher in the East China Sea than the ones in the clean waters off California. The normalized water leaving radiances (nLw) at 412, 443, 490, 555 nm of OSMI and the field chlorophyll a in the East China Sea were correlated each other. According to the results, the relationship between field chlorophyll $\alpha$ and nLw 410 nm in OSMI bands was the lowest, whereas that between field chlorophyll a and nLw 555 nm in the bands was the highest. Reciprocal action between the field chlorophyll a and the band ratio of the OSMI bands (nLw410/nLw555, nLw443/nLw555, nLw490/nLw555) was also studied. Relationship between the chlorophyll $\alpha$ and the band ratio (nLw490/nLw555) was highest in the OSMI bands. Relationship between the chlorophyll $\alpha$ and the ratio (nLw490/nLw555) was higher than one in the nLw410/nLw555. The difference in the estimated chlorophyll $\alpha$ (mg/m$^3$) between OSMI and SeaWiFS (Sea Viewing Wide Field-of-View Sensor) at the special observing stations in the northern eastern sea of Jeju Island in February 25, 2002 was about less than 0.3 mg/m$^3$ within 3 hours. It is suggested that OC2 (ocean color chlorophyll 2 algorithm) be used to get much better estimation of chlorophyll $\alpha$ from OSMI than the ones from the updated algorithms as OC4.

Comparison of Chlorophyll Algorithms in the Bohai Sea of China

  • Xiu, Peng;Liu, Yuguang;Rong, Zengrui;Zong, Haibo;Li, Gang;Xing, Xinogang;Cheng, Yongcun
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.199-209
    • /
    • 2007
  • Empirical band-ratio algorithms and artificial neural network techniques to retrieve sea surface chlorophyll concentrations were evaluated in the Bohai Sea of China by using an extensive field observation data set. Bohai Sea represents an example of optically complex case II waters with high concentrations of colored dissolved organic mattei (CDOM). The data set includes coincident measurements of radiometric quantities and chlorophyll a concentration (Chl), which were taken on 8 cruises between 2003 and 2005, The data covers a range of variability in Chl in surface waters from 0.3 to 6.5 mg $m^{-3}$. The comparison results showed that these empirical algorithms developed for case I and case II waters can not be applied directly to the Bohai Sea of china, because of significant biases. For example, the mean normalized bias (MNB) for OC4V4 product was 1.85 and the root mean square (RMS) error is 2.26.

COMPARISON OF RED TIDE DETECTION BY A NEW RED TIDE INDEX METHOD AND STANDARD BIO-OPTICAL ALGORITHM APPLIED TO SEA WIFS IMAGERY IN OPTICALLY COMPLEX CASE-II WATERS

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.445-449
    • /
    • 2005
  • Various methods to detect the phytoplankton/red tide blooms in the oceanic waters have been developed and tested on satellite ocean color imagery since the last two and half decades, but accurate detection of blooms with these methods remains challenging in optically complex turbid waters, mainly because of the eventual interference of absorbing and scattering properties of dissolved organic and particulate inorganic matters with these methods. The present study introduces a new method called Red tide Index (Rl), providing indices which behave as a good measure of detecting red tide algal blooms in high scattering and absorbing waters of the Korean South Sea and Yellow Sea. The effectiveness of this method in identifying and locating red tides is compared with the standard Ocean Chlorophyll 4 (OC4) bio-optical algorithm applied to SeaWiFS ocean imagery, acquired during two bloom episodes on 27 March 2002 and 28 September 2003. The result revealed that OC4 bio-optical algorithm falsely identifies red tide blooms in areas abundance in colored dissolved organic and particulate inorganic matter constituents associated with coastal areas, estuaries and river mouths, whereas red tide index provides improved capability of detecting, predicting and monitoring of these blooms in both clear and turbid waters.

  • PDF

Spatio-Temporal Variations of Harmful Algal Blooms in the South Sea of Korea

  • Kim, Dae-Hyun;Denny, Widhiyanuriyawan;Min, Seung-Hwan;Lee, Dong-In;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.475-486
    • /
    • 2009
  • Harmful algal blooms (HAB) caused by the dominant species Cochlodinium polykrikoides (C. polykrikoides) appear in the South Sea of Korea and are particularly present in summer and fall seasons. Environmental factors such as water temperature, weather conditions (air temperature, cloud cover, sunshine, precipitation and wind) influence on the initiation and subsequent development of HAB. The purpose of this research was to study spatial and temporal variations of HAB in the Yeosu area using environmental (oceanic and meteorological) and satellite data. Chlorophyll-a concentrations were calculated using Sea-viewing Wide Field-of-view Sensor (SeaWiFS) images by an Ocean Chlorophyll 4 (OC4) algorithm, and HAB were estimated using the Red tide index Chlorophyll Algorithm (RCA). We also used the surface velocity of sequential satellite images applying the Maximum Cross Correlation method to detect chlorophyll-a movement. The results showed that the water temperature during HAB occurrences in August 2002-2008 was $19.4-30.2^{\circ}C$. In terms of the frequency of the mean of cell density of C. polykrikoides, the cell density of the HAB found at low (<300 cells/ml), medium (300-1000 cells/ml), and high (>1000 cells/ml) levels were 27.01%, 37.44%, and 35.55%, respectively. Meteorological data for 2002-2008 showed that the mean air temperature, precipitation, wind speed and direction, and sunshine duration were $22.39^{\circ}C$, 6.54 mm/day, 3.98 m/s (southwesterly), and 1-11.7 h, respectively. Our results suggest that HAB events in the Yeosu area can be triggered and extended by heavy precipitation and massive movement of HAB from the East China Sea. Satellite images data from July to October 2002-2006 showed that the OC4 algorithm generally estimated high chlorophyll-a concentration ($2-20\;mg/m^3$) throughout the coastal area, whereas the RCA estimated concentrations at $2-10\;mg/m^3$. The surface velocity of chlorophyll-a movement from sequential satellite images revealed the same patterns in the direction of the Tsushima Warm Current.

Characteristic Response of the OSMI Bands to Estimate Chlorophyll a in the East China Sea

  • Suh, Young-Sang;Lee, Na-Kyung;Jang, Lee-Hyun;Hwang, Jae-Dong
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.208-208
    • /
    • 2002
  • Relationship between chlorophyll a in the East China Sea and spectral bands (412, 443,490, (510), 555, (676,765) in) of OSMI (Ocean Scanning Multi-Spectral Imager) including the profile multi-spectral radiometer (PRR-800) was studied. The values of remote sensing reflectance (Rrs) at the bands corresponding to the field chlorophyll a in α in the East China Sea were much higher than those in clear waters off California, USA. In case of the particle absorptions related to the chlorophyll a concentration at the spectral bands (440, 670 nm) were much higher in the East China Sea than the ones in the clean waters off California. The normalized water leaving radiances (nLw) at 412, 443, 490, 555 m of OSMI and field chlorophyll a in the East China Sea were correlated each other. According to the results, the relationship between field chlorophyll a and nLw 410 m in OSMI bands was the lowest, whereas that between the field chlorophyll a and nLw 555 nm in the bands was the highest. Reciprocal action between the field chlorophyll a and the band ratio of the OSMI bands (nLw410/nLw555, nLw443/nLw555, nLw490/nLw555) was also studied. Correlation between the chlorophyll a and the band ratio (nLw490/nLw555) was highest in the OSMI bands. Relationship between the chlorophyll a and the ratio (nLw443/nLw555) was higher than one in the nLw410/nLw555. The difference in the estimated chlorophyll α (mg/m3) between OSMI and SeaWiFS (Sea Viewing Wide Field-of-View Sensor) at the special observing stations in the northern eastern sea of Jeju Island in february 25, 2002 was about less than 0.3 mg/m3 within 3 hours. It is suggested that OC2 (ocean color chlorophyll 2 algorithm) be used to get much better estimation of chlorophyll α from OSMI than the ones from the updated algorithms as OC4.

  • PDF

Comparison of Bio-Optical Properties of the Yellow Sea and the East Sea using SeaWiFS Data (SeaWiFS 자료를 이용한 황해와 동해의 생물광학 특성 비교)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.2
    • /
    • pp.38-45
    • /
    • 2001
  • Three lines from $36_{\circ}$ N, $124_{\circ}$ E, and $132_{\circ}$ E of the East Sea and the Yellow Sea were chosen to extract spectra of normalized water leaving radiances. Comparative analysis of the OCTS algorithm and SeaWiFS(OC-2) algorithms was presented here. OCTS algorithm have more overestimate than SeaWiFS(OC-2 algorithm) for detecting chlorophyll concentration. Atmospheric correction algorithm that is excluded the effect of SS in the case 2 water need for long term ocean environmental monitoring of the East Sea and the Yellow Sea. And, considered the effect of CDOM and SS, bio-optical algorithm have to be developed in this research.

  • PDF

Detecting red tides in turbid waters

  • Yoo, Sin-Jae;Jeong, Jong-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.321-327
    • /
    • 1999
  • As an example of many possible applications of OSMI data, we present a method to detect red tides. In Korean waters, red tides usually occur in the South Sea where the turbidity is usually high due to strong tidal mixing in the shallow sea. The conventional case 1 chlorophyll algorithm cannot be applied since it cannot distinguish chlorophyll from SS (suspended sediments). In October 1998, a red tide outbreak occurred off the coast of KunSan. We analyzed the SeaWiFS data of the outbreak. The standard SeaWiFS chlorophyll algorithm OC-2 was poor in identifying the red tides. However, comparison of spectra of normalized water-leaving radiance indicates that red tide pixels can be distinguished from sediment-laden pixels. Channel 443 and 555 were effective in showing the spectral characteristics. We suggest K490 algorithm as an example in summarizing the information of the spectra and thereby in distinguishing the red tide pixels. Further development is desirable.

Study on Characteristics of Harmful Algal Blooms in the South Sea of Korea by using Satellite and In-Situ Data

  • Denny, Widhiyanuriyawan;Kim, Dae-Hyun;Chung, Yong-Hyun;Yoon, Hong-Joo
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.580-585
    • /
    • 2009
  • Harmful Algal Blooms (HABs), caused by Cochlodinium polykrikoides that causative fishery mortality, impact on aquaculture and economic loss appear particularly in summer and fall seasons in the Korean seas. It was studied on characteristics of HABs in the South Sea of Korea by using satellite and in-situ data. The in-situ data encompassed oceanic and meteorological data from July to October 2002-2008 and satellite data from July to October 2002-2006. Chlorophyll concentrations were calculated using Seaviewing Wide Field-of-view Sensor images by an Ocean Color (OC4) algorithm, and HABs were estimated using the Red tide index Chlorophyll Algorithm (RCA). The HAB occurrences were dominant when water temperature was $22.6-28^{\circ}C$ in August. The frequency of the individual numbers during 2002-2008, the HABs more than 1000 cells/ml (alert condition), were 73.57 %. In meteorological data from July to September during 2002-2008, the average precipitation, the mean air temperature, the mean wind speed and direction, and the sunshine were 9.31 mm/day, $24.07^{\circ}C$, 2.34 m/s and easterly, and 1-11 h, respectively. Our results suggest that the upwelling is caused by southwesterly wind in summer season and the Tsushima Warm Current which have influenced on the dispersion and moving of HAB (chlorophyll). In addition, the fresh water from Nakdong River, as the source of nutrients, also influences the occurrence of HABs.

Influence of atmospheric aerosol on satellite ocean color data in the East/Japan Sea (동해에서 대기에어로졸이 해색위성자료에 미치는 영향)

  • Yamada, Keiko;Kim, Sang-Woo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.53-54
    • /
    • 2009
  • The influence of atmospheric aerosol on satellite ocean color data were evaluated using SeaWiFS monthly standard mapped image products. The atmospheric optical thickness (AOT) was increased in spring and summer, and it showed the strong positive correlation with remote sensing reflectance, normalized waterleaving radiance /solar irradiance, at 555 nm (Rrs555) which is a component of the satellite chlorophyll estimation. Such the high AOT and high Rrs555 pixels showed overestimation of satellite chlorophyll in spring, especially in the area which showed large phytoplankton absorption which 1s expressed by low remote sensing reflectance at 443, 490 and 510 nm (Rrs 443, Rrs490 and Rrs510).

  • PDF

Spatial Downscaling of Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index Using GOCI Satellite Image and Machine Learning Technique (GOCI 위성영상과 기계학습 기법을 이용한 Ocean Colour-Climate Change Initiative (OC-CCI) Forel-Ule Index의 공간 상세화)

  • Sung, Taejun;Kim, Young Jun;Choi, Hyunyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.959-974
    • /
    • 2021
  • Forel-Ule Index (FUI) is an index which classifies the colors of inland and seawater exist in nature into 21 gradesranging from indigo blue to cola brown. FUI has been analyzed in connection with the eutrophication, water quality, and light characteristics of water systems in many studies, and the possibility as a new water quality index which simultaneously contains optical information of water quality parameters has been suggested. In thisstudy, Ocean Colour-Climate Change Initiative (OC-CCI) based 4 km FUI was spatially downscaled to the resolution of 500 m using the Geostationary Ocean Color Imager (GOCI) data and Random Forest (RF) machine learning. Then, the RF-derived FUI was examined in terms of its correlation with various water quality parameters measured in coastal areas and its spatial distribution and seasonal characteristics. The results showed that the RF-derived FUI resulted in higher accuracy (Coefficient of Determination (R2)=0.81, Root Mean Square Error (RMSE)=0.7784) than GOCI-derived FUI estimated by Pitarch's OC-CCI FUI algorithm (R2=0.72, RMSE=0.9708). RF-derived FUI showed a high correlation with five water quality parameters including Total Nitrogen, Total Phosphorus, Chlorophyll-a, Total Suspended Solids, Transparency with the correlation coefficients of 0.87, 0.88, 0.97, 0.65, and -0.98, respectively. The temporal pattern of the RF-derived FUI well reflected the physical relationship with various water quality parameters with a strong seasonality. The research findingssuggested the potential of the high resolution FUI in coastal water quality management in the Korean Peninsula.