• Title/Summary/Keyword: Occlusal maxillary CT

Search Result 19, Processing Time 0.019 seconds

The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study (교합력이 치경부 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Chan-Seok;Hur, Bock;Kim, Hyeon-Cheol;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.246-257
    • /
    • 2008
  • The purpose of this study was to investigate the influence of various occlusal loading sites and directions on the stress distribution of the cervical composite resin restorations of maxillary second premolar, using 3 dimensional (3D) finite element (FE) analysis. Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). HyperMesh (Altair Engineering, Inc., Troy, USA) and ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid (Z100, 3M Dental Products, St. Paul, MN, USA) or flowable resin (Tetric Flow, Vivadent Ets., FL-9494-Schaan, Liechtenstein) and each restoration was simulated with adhesive layer thickness ($40{\mu}m$). A static load of 200 N was applied on the three points of the buccal incline of the palatal cusp and oriented in $20^{\circ}$ increments, from vertical (long axis of the tooth) to oblique $40^{\circ}$ direction towards the buccal. The maximum principal stresses in the occlusal and cervical cavosurface margin and vertical section of buccal surfaces of notch-shaped class V cavity were analyzed using ANSYS. As the angle of loading direction increased, tensile stress increased. Loading site had little effect on it. Under same loading condition, Tetric Flow showed relatively lower stress than Z100 overall, except both point angles. Loading direction and the elastic modulus of restorative material seem to be important factor on the cervical restoration.

Hard tissue formation after direct pulp capping with osteostatin and MTA in vivo

  • Ji-Hye Yoon;Sung-Hyeon Choi ;Jeong-Tae Koh ;Bin-Na Lee ;Hoon-Sang Chang;In-Nam Hwang; Won-Mann Oh;Yun-Chan Hwang
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.17.1-17.9
    • /
    • 2021
  • Objectives: In recent in vitro study, it was reported that osteostatin (OST) has an odontogenic effect and synergistic effect with mineral trioxide aggregate (MTA) in human dental pulp cells. Therefore, the aim of this study was to evaluate whether OST has a synergistic effect with MTA on hard tissue formation in vivo. Materials and Methods: Thirty-two maxillary molars of Spraque-Dawley rats were used in this study. An occlusal cavity was prepared and the exposed pulps were randomly divided into 3 groups: group 1 (control; ProRoot MTA), group 2 (OST 100 μM + ProRoot MTA), group 3 (OST 10 mM + ProRoot MTA). Exposed pulps were capped with each material and cavities were restored with resin modified glass ionomer. The animals were sacrificed after 4 weeks. All harvested teeth were scanned with micro-computed tomography (CT). The samples were prepared and hard tissue formation was evaluated histologically. For immunohistochemical analysis, the specimens were sectioned and incubated with primary antibodies against dentin sialoprotein (DSP). Results: In the micro-CT analysis, it is revealed that OST with ProRoot MTA groups showed more mineralized bridge than the control (p < 0.05). In the H&E staining, it is showed that more quantity of the mineralized dentin bridge was formed in the OST with ProRoot MTA group compared to the control (p < 0.05). In all groups, DSP was expressed in newly formed reparative dentin area. Conclusions: OST can be a supplementary pulp capping material when used with MTA to make synergistic effect in hard tissue formation.

The influence of combining composite resins with different elastic modulus on the stress distribution of class V restoration: A three-dimensional finite element study (탄성계수가 다른 복합레진의 혼합수복이 5급 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Jeong-Kil;Hur, Bock;Kim, Sung-Kyo
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.184-197
    • /
    • 2008
  • This study was to investigate the influence of combining composite resins with different elastic modulus, and occlusal loading condition on the stress distribution of restored notch-shaped non-carious cervical lesion using 3D finite element (FE) analysis. The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. A notch-shaped cavity was modeled and filled with hybrid, flowable resin or a combination of both. After restoration, a static load of 500N was applied in a point-load condition at buccal cusp and palatal cusp. The stress data were analyzed using analysis of principal stress. Results showed that combining method such that apex was restored by material with high elastic modulus and the occlusal and cervical cavosurface margin by small amount of material with low elastic modulus was the most profitable method in the view of tensile stress that was considered as the dominant factor jeopardizing the restoration durability and promoting the lesion progression.

  • PDF

The influence of combining composite resins with different elastic modulus on the stress distribution of class V restoration: A three-dimensional finite element study (탄성계수가 다른 복합레진의 혼합수복이 5급 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Jeong-Kil;Hur, Bock;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.184-197
    • /
    • 2008
  • This study was to investigate the influence of combining composite resins with different elastic modulus, and occlusal loading condition on the stress distribution of restored notch-shaped non-carious cervical lesion using 3D finite element (FE) analysis. The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. A notch-shaped cavity was modeled and filled with hybrid, flowable resin or a combination of both. After restoration, a static load of 500N was applied in a point-load condition at buccal cusp and palatal cusp. The stress data were analyzed using analysis of principal stress. Results showed that combining method such that apex was restored by material with high elastic modulus and the occlusal and cervical cavosurface margin by small amount of material with low elastic modulus was the most profitable method in the view of tensile stress that was considered as the dominant factor jeopardizing the restoration durability and promoting the lesion progression.

Effects of occlusal load on the stress distribution of four cavity configurations of noncarious cervical lesions: A three-dimensional finite element analysis study (네 가지 형태의 비우식성 치경부 병소의 3차원 유한요소법적 응력분석)

  • Jeon, Sang-Je;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.359-370
    • /
    • 2006
  • The objective of this study was to investigate the effect of excessive occlusal loading on stress distribution on four type of cervical lesion, using a three dimensional finite element analysis (3D FEA). The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. Four different lesion configurations representative of the various types observed clinically for teeth were studied. A static point load of 500N was applied to the buccal and lingual cusp (Load A and B). The principal stresses in lesion apex, and vertical sectioned margin of cervical wall were analyzed. The results were as follows 1. The patterns of stress distribution were similar but the magnitude was different in four types of lesion 2. The peak stress was observed at mesial corner and also stresses concentrated at lesion apex. 3. The compressive stress under load A and the tensile stress under load B were dominant stress. 4. Under the load, lesion can be increased and harmful to tooth structure unless restored.

Stress distribution of Class V composite resin restorations: A three-dimensional finite element study (5급 복합레진수복물의 응력분포에 관한 3차원 유한요소법적 연구)

  • Park, Jeong-Kil;Hur, Bock;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.28-38
    • /
    • 2008
  • This study was to investigate the influence of composite resins with different elastic modulus, cavity modification and occlusal loading condition on the stress distribution of restored notch-shaped noncarious cervical lesion using 3-dimensional (3D) finite element (FE) analysis. The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. A notch-shaped cavity and a modified cavity with a rounded apex were modeled. Unmodified and modified cavities were filled with hybrid or flowable resin. After restoration, a static load of 500N was applied in a point-load condition at buccal cusp and palatal cusp. The stress data were analyzed using analysis of principal stress. The results were as follows: 1. In the unrestored cavity, the stresses were highly concentrated at mesial CEJ and lesion apex and the peak stress was observed at the mesial point angle under both loading conditions. 2. After restoration of the cavity, stresses were significantly reduced at the lesion apex, however cervical cavosurface margin, stresses were more increased than before restoration under both loading conditions. 3. When restoring the notch-shaped lesion, material with high elastic modulus worked well at the lesion apex and material with low elastic modulus worked well at the cervical cavosurface margin. 4. Cavity modification the rounding apex did not reduce compressive stress, but tensile stress was reduced.

Comparison of asymmetric degree between maxillofacial hard and soft tissue in facial asymmetric subjects using three-dimensional computed tomography (안면비대칭자의 3차원 전산단층사진 분석에서 경$\cdot$연조직간 비대칭 정도 차이)

  • Kim, Wang-Sik;Lee, Ki-Heon;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.35 no.3 s.110
    • /
    • pp.163-173
    • /
    • 2005
  • The purpose of this study was to compare the asymmetric degree between maxillofacial hard and soft tissues in individuals with facial asymmetry. Computerized tomographies (CT) of 34 adults (17 male, 17 female) who had facial asymmetry were taken. The CT images were transmitted to personal computers and then reconstructed into three-dimensional (3D) images through the use of computer software. In order to evaluate the degree of facial asymmetry, 6 measurements were constructed as the hard tissue measurements while 6 counterpart measurements were taken as the soft tissue measurements. The means and standard deviations were obtained for each measurement using 3D measure, then t-test was used to investigate the differences between each hard tissue measurement and the corresponding soft tissue measurement All measurements used in the present study showed statistically significant differences between the hard and soft tissues. The degree of soft tissue asymmetry was smaller than that of corresponding hard tissue asymmetry in case of chin deviation, frontal ramal inclination difference, and frontal corpus inclination difference. On the other hand, the degree of soft tissue asymmetry was greater than that of underlying hard tissue asymmetry in the measurement of lip canting and lip cheilion height difference The present study suggests that asymmetric differences of hard and soft tissue is observed nu facial asymmetric subjects and thus soft tissue analysis is needed in addition to hard tissue analysis when making an evaluation of facial asymmetry.

The Pattern of Initial Displacement in Lingual Lever Arm Traction of 6 Maxillary Anterior Teeth According to Different Material Properties: 3-D FEA (유한요소모델에서 레버암을 이용한 상악 6전치 설측 견인 시 초기 이동 양상)

  • Choi, In-Ho;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.213-230
    • /
    • 2008
  • The aim of this study was to analyze the initial movement and the stress distribution of each tooth and periodontal ligament during the lingual lever-arm retraction of 6 maxillary incisors using FEA. Two kinds of finite element models were produced: 2-properties model (simple model) and 24-properties model (multi model) according to the material property assignment. The subject was an adult male of 23 years old. The DICOM images through the CT of the patient were converted into the 3D image model of a skull using the Mimics (version 10.11, Materialise's interactive Medical Image Control System, Materialise, Belgium). After series of calculating, remeshing, exporting, importing process and volume mesh process was performed, FEA models were produced. FEA models are consisted of maxilla, maxillary central incisor, lateral incisor, canine, periodontal ligaments and lingual traction arm. The boundary conditions fixed the movements of posterior, sagittal and upper part of the model to the directions of X, Y, Z axis respectively. The model was set to be symmetrical to X axis. Through the center of resistance of maxilla complex, a retraction force of 200g was applied horizontally to the occlusal plane. Under this conditions, the initial movements and stress distributions were evaluated by 3D FEA. In the result, the amount of posterior movement was larger in the multi model than in the simple model as well as the amount of vertically rotation. The pattern of the posterior movement in the central incisors and lateral incisors was controlled tipping movement, and the amount was larger than in the canine. But the amount of root movement of the canine was larger than others. The incisor rotated downwardly and the canines upwardly around contact points of lateral incisor and canine in the both models. The values of stress are similar in the both simple and multi model.

Correlation between menton deviation and dental compensation in facial asymmetry using cone-beam CT (Cone-beam CT를 이용한 안면비대칭자에서 이부편위에 따른 치성보상의 양상분석)

  • Park, Soo-Byung;Park, Jeong-Heuy;Jung, Yun-Hoa;Jo, Bong-Hye;Kim, Yong-Il
    • The korean journal of orthodontics
    • /
    • v.39 no.5
    • /
    • pp.300-309
    • /
    • 2009
  • Objective: The purpose of this study was to evaluate the correlation between menton deviation and dental compensation in facial asymmetry. Methods: Tooth axis and distance of first molar and canine to the reference plane were investigated by cone-beam computerized tomography. The subjects consisted of 50 patients with asymmetric mandibles (male 21, female 29, mean age 24.3 years). Control groups were also assessed (male 11, female 9, mean age 25.6 years). Nine measurements (5 linear measurements and 4 angular measurements) were measured in order to evaluate the correlation between menton deviation and the linear and angular difference of first molar and canine in the deviated and none-deviated sides using the defined MPR images. The differences between deviated and non-deviated side, according to menton deviation, were statistically analyzed using stepwise multiple regression analysis. Results: From the result, Menton deviation was negatively correlated with mandibular first molar's angular measurement (${\Delta\angle}LM6$-Mn plane (dev.-ndev.)) and positively with maxillary fist molar's angular measurement (${\Delta\angle}UM6$-FH plane (dev.-ndev.)) (p < 0.01). Two angular measurements (${\Delta\angle}LM6$-Mn plane (dev.-ndev.), ${\Delta\angle}UM6$-FH plane (dev.-ndev.)) explained the variability in menton deviation with a significant $r^2$ value of 0.589. Conclusions: This study suggests that the tooth axis of upper and lower first molars leans towards the deviated side of Menton when there is mandibular asymmetry with Menton deviation.