• 제목/요약/키워드: Occlusal Stress

검색결과 183건 처리시간 0.029초

EFFECTS OF MAXILLARY PROTRACTION ON THE DISPLACEMENT OF THE MAXILLA (상악골 전방 견인이 상악골체의 변위에 미치는 영향)

  • Ko, Jeong-Seok;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • 제25권5호
    • /
    • pp.543-555
    • /
    • 1995
  • In the orthopedic therapy, the biomechanical analysis of the appliance is necessary to get a desirable orthopedic effect. The purpose of this study was to investigate the desirable direction and application position of the protraction force. The protraction force of 500g was applied to the first premolar or to the first molar. The direction of force application was paralell or $20^{\circ}$ downward to the occlusal plane respectively. The stress distribution and the displacement within the maxilla was analyzed by a 3-dimensional finite element method. The findings obtained were as follows 1. Protraction forces caused a counterclockwise rotation of the maxilla. 2. The degree of maxillary rotation was less when the force was applied $20^{\circ}$ downward direction to the occlusal plane than when applied to the parallel direction. 3. The degree of rotation of maxilla was greater when the parallel force was applied to the 1st premolar than when applied to the first molar, whereas it was greater when force is applied $20^{\circ}$ downward than at the first premolar. In conclusion, the $20^{\circ}$ downward protraction from the first premolar induced the least counterclockwise rotation of the maxilla and was thought as the desirable direction and application position of the protraction force.

  • PDF

FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES AND DENTURE MOVEMENTS INDUCED BY OVERDENTURES (Overdenture 하에서 하악응력 및 의치의 변위에 관한 유한요소법적 분석)

  • Kim, Joung-Hee;Chung, Chae-Heon;Cho, Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제28권1호
    • /
    • pp.63-94
    • /
    • 1990
  • The purpose of this study was to analyze the displacement and the magnitude and the mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment tooth and the mandibular supporting bone when various denture base materials, such as acrylic resin and 0.5mm metal base, and various denture base designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. Mandibular arch models, with only canine remaining, were fabricated. In the first denture base design, a space, approximately 1mm thick, was prepared between the denture and the dome abutment. In the second denture base design, contact between the denture and the dome abutment was eliminated except the contact of the occlusal third of the abutment. In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle region, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 kgs on the first molar region(P1) and 7 kgs on the central incisal region (P2) in a vertical direction. Then the force of 10 kgs was applied distributively from the first premolar to the second molar of each model in a vertical direction(P3). The results were as follows. : 1. When the testing vertical loads were given to the selected points of the overdenture, the overdenture showed the rotatory phenomenon, as well as sinking and the displacements of alveolar ridge, abutment and lower border of mandible under the metal base overdenture were less than those under the acrylic resin overdenture. 2. The maximum principal stresses(the maximum tensile stresses) being considered, high tensile stresses occured at the buccal shelf area, the posterior region of the ridge crest and the anterior border region of the mandibular ramus. 3. The minimum principal stresses(the maximum compressive stresses) being considered, high compressive stresses occured at the inferior and posterior border region of the mandible, the mandibular angle and the posterior border region of the mandibular ramus. 4. The vertical load on the central incisal region(P2) produced higher equivalent stress in the mandible than that on any other region(P1, P3) because of the long lever arm distance from the fixed points to the loading point. 5. Higher equivalent stresses were distributed throughout the metal base overdenture than the resin base overdenture under the same loading condition. 6. The case of occlusal third contact of the abutment to the denture produced higher equivalent stresses in the abutment, the mandibular area around the abutment and the overdenture than the case of a 1mm space between the denture and the abutment. 7. Without regard to overdenture base materials and designs, the amounts and distribution patterns of equivalent stresses under the same loading condition were similar in the mucous membrane.

  • PDF

Full Mouth Rehabilitation (완전 구강 회복술)

  • Lee, Seung-Kyu;Lee, Sung-Bok;Kwon, Kung-Rock;Choi, Dae-Gyun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • 제16권3호
    • /
    • pp.171-185
    • /
    • 2000
  • The treatment objectives of the complete oral rehabilitation are : (1) comfortably functioning temporomandibular joints and stomatognathic musculature, (2) adherence to the basic principle of occlusion advocated by Schuyler, (3) anterior guidance that is in harmony with the envelope of function, (4) restorations that will not violate the patient's neutral zone. There may be many roads to achieving these objectives, but they all convey varing degrees of stress and strain on the dentist and patient. There are no "easy" cases of oral rehabilitation. Time must be taken to think, time must be taken to plan, and time must be taken to perform, since time is the critical element in both success and failure. Moreover, a systematized and integrated approach will lead to a prognosis that is favorable and predictable. This approach facilitates development of optimum oral function, comfort, and esthetics, resulting in a satisfied patient. Such a systematized approach consists of four logical phase : (1) patient evaluation, (2) comprehensive analysis and treatment planning, (3) integrated and systematic reconstruction, and (4) postoperative maintenance. Firstly, we must evaluate the mandibular position. The results of a repetitive, unstrained, nondeflective, nonmanipulated mandibular closure into complete maxillomandibular intercuspation is not so much a "centric" occlusion as it is a stable occlusion. Accordingly, we ought to concern ourselves less with mandibular centricity and more with mandibular stability, which actually is the relationship we are trying to establish. The key to this stability is intercuspal precision. Once neuromuscular passivity has been achieved during an appropriate period of occlusal adjustment and provisionalization, subsequent intercuspal precision becomes the controlling factors in maintaining a stable mandibular position. Secondly, we must evaluate the planned vertical dimension of occlusion in relationship to what may now be an altered(generally diminished), and avoid the hazard of using such an abnormal position to indicate ultimate occlusal contacting points. There are no hard and fast rules to follow, no formulas, and no precise ratios between the vertical dimension of occlusion. Like centric relation, it is an area, not a point.

  • PDF

The Influence of Attachment Type on the Distribution of Occlusal Force in Implant Supported Overdentures (하악 임플란트 오버덴쳐에서 어태치먼트 종류에 따른 응력분포)

  • Sung, Chai-Ryun;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • 제25권4호
    • /
    • pp.375-390
    • /
    • 2009
  • Statement of problem: Implant supported overdenture is accepted widely as a way to restore edentulous ridge providing better retention and support of dentures. Various types of attachment for overdenture have been developed. Purpose: The purpose of this study was to investigate the influence of attachment type in implant overdentures on the biomechanical stress distribution in the surrounding bone, prosthesis and interface between implant and bone. Material and methods: Finite element analysis method was used. Average CT image of mandibular body(Digital $Korea^{(R)}$, KISTI, Korea) was used to produce a mandibular model. Overdentures were placed instead of mandibular teeth and 2mm of mucosa was inserted between the overdenture and mandible. Two implants($USII^{(R)}$, Osstem, Korea) were placed at both cuspid area and 4 types of overdenture were fabricated ; ball and socket, Locator, magnet and bar type. Load was applied on the from second premolar to second molar tooth area. 6 times of finite element analyses were performed according to the direction of the force $90^{\circ}$, $45^{\circ}$, $0^{\circ}$ and unilateral or bilateral force applied. The stress at interface between implants and bone, and prosthesis and the bone around implants ware compared using von Mises stress. The results were explained with color coded graphs based on the equivalent stress to distinguish the force distribution pattern and the site of maximum stress concentration. Results: Unilateral loading showed that connection area between implant fixture and bar generated maximum stress in bar type overdentures. Bar type produced 100 Mpa which means the most among 4 types of attachments. Bilateral loading, however, showed that bar type was more stable than other implants(magnet, ball and socket). 26 Mpa of bar type was about a half of other types on overdenture under $90^{\circ}$ bilateral loading. Conclusions: In any directions of stress, bar type was proved to be the most vulnerable type in both implants and overdentures. Interface stress did not show any significant difference in stress distribution pattern.

A STUDY OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN ACCORDING TO FILLING METHODS USING STRAIN GAUGE (스트레인 게이지를 이용한 적층방법에 따른 복합레진의 중합수축에 관한 연구)

  • Kim, Eung-Hag;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • 제35권1호
    • /
    • pp.18-29
    • /
    • 2008
  • The purpose of this study was to compare the polymerization shrinkage of several filling methods using strain gauges. In this study, a light-emitting diode(LED) curing unit(Elipar Freeligh2, 3M EPSE, USA) and plasma arc lamp(PAL) curing unit(Flipo, LOKKI, France) were used for curing, Filtek $Z350^{TM}$(3M EPSE, USA) composite resin was used for the cavity filling. Sixty permanent bicuspid teeth, that were extracted for orthodontic treatment, were studied. The cavities were prepared on the occlusal surface and were filled using the following methods : 1) bulk filling, 2) parallel filling, 3) oblique filling The strain was recorded on the buccal, lingual, mesial and distal surfaces and the strain values were computed into stress values. The shear bond strength of each filling method was tested using a Micro Universal Testing machine. The results can be summarized as follows: 1. In the strain changes, all LED and PAL curing groups showed an increase on the buccal surface and a slow decrease as time elapsed. 2. In the strain changes of the mesial and distal surfaces, the decreases and increases were shown repeatedly and reduced as time elapsed. 3. There were no significant statistical strain changes among filling methods in the LED or PAL curing groups. 4. There were significant statistical strain changes between the LED and PAL curing groups on the buccal surface(p<0.05). 5. From the shear bond strength results, in the LED curing group, filling method 3 showed lower surface stress than filling method 1 and 2(p<0.05). In the PAL curing group, there were no significant statistical strain changes between each filling method. 6. The surface stress of each group was lower than the shear bond strength.

  • PDF

A PHOTOELASTIC STRESS ANLYSIS IN THE SURROUNDING TISSUES OF TEETH SEATED BY INDIRECT RETAINERS WHEN APPLIED DISLODGING FORCES ON UNILATERAL DISTRAL EXTENTION PARTIAL DENTURES (편측성 후방연장 국소의치의 의치상에 이탈력이 가해질 때 간접유지장치가 장착된 치아 주위조직에 발생하는 응력에 관한 광탄성 분석)

  • Son, Jee-Young;Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제34권3호
    • /
    • pp.415-430
    • /
    • 1996
  • The purpose of this study was to evaluate the stress distributions in the surrounding tissues of the teeth seated by indirect retainers in three different teeth of unilateral distal extension partial denture when the dislodging forces were applied on denture bases. Three dimensional photoelastic models were made. The teeth on which indirect retainers were seated were mandibular left lateral incisor (Model I), canine (Model II), and first premolar (Model III). The dislodging force with 860mg at $45^{\circ}$ angulation to occlusal plane was applied to each model. Three dimensional photoelastic stress analysis was done, and the records were diagramed and analysed. The results were as follows : The compressive stresses were shown the most on neck portions of buccal, mesial, and distal sides in all three models. Slight tensile stresses were shown on neck portions of lingual sides in all three models. The compressive stresses on buccal side were shown in strength in such order as model I, model II, and model III. The compressive stresses were shown on neck portion of mesial and distal sides of model I and mode II, with model I more than Model II. The compressive stresses were shown only on neck portion of mesial side on Model III. The general overall magnitude of compressive stresses were shown in strength in such order as Model I, Model II, and Model III.

  • PDF

FINITE ELEMENT ANALYSIS OF MAXILLARY CENTRAL INCISORS RESTORED WITH VARIOUS POST-AND-CORE APPLICATIONS (여러가지 post-and-core로 수복된 상악 중절치의 유한요소법적 연구)

  • Seo, Min-Seock;Shon, Won-Jun;Lee, Woo-Cheol;Yoo, Hyun-Mi;Cho, Byeong-Hoon;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • 제34권4호
    • /
    • pp.324-332
    • /
    • 2009
  • The purpose of this study was to investigate the effect of rigidity of post core systems on stress distribution by the theoretical technique, finite element stress-analysis method. Three-dimensional finite element models simulating an endodontically treated maxillary central incisor restored with a zirconia ceramic crown were prepared and 1.5 mm ferrule height was provided. Each model contained cortical bone, trabecular bone, periodontal ligament, 4 mm apical root canal filling, and post-and-core. Six combinations of three parallel type post (zirconia ceramic, glass fiber, and stainless steel) and two core (Paracore and Tetric ceram) materials were evaluated, respectively. A 50 N static occlusal load was applied to the palatal surface of the crown with a $60^{\circ}$angle to the long axis of the tooth. The differences in stress transfer characteristics of the models were analyzed. von Mises stresses were chosen for presentation of results and maximum displacement and hydrostatic pressure were also calculated. An increase of the elastic modulus of the post material increased the stress, but shifted the maximum stress location from the dentin surface to the post material. Buccal side of cervical region (junction of core and crown) of the glass fiber post restored tooth was subjected to the highest stress concentration. Maximum von Mises stress in the remaining radicular tooth structure for low elastic modulus resin core (29.21 MPa) was slightly higher than that for high elastic modulus resin core (29.14 MPa) in case of glass fiber post. Maximum displacement of glass fiber post restored tooth was higher than that of zirconia ceramic or stainless steel post restored tooth.

The Effect of Surface Sealing on the Microleakage of Class V Composite Resin Restorations (제V급 복합레진 수복물의 표면전색이 미세변연누출에 미치는 효과)

  • Youn, Yeon-Hee;Hyun, Hong-Keun;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • 제34권3호
    • /
    • pp.359-369
    • /
    • 2007
  • This in vitro study was performed to assess the effect of surface sealing on the microleakage of class V composite resin restorations that underwent several aging treatments. Class V cavities were prepared on the buccal surface of 100 sound extracted premolars and restored with a hybrid light-cured composite resin according to the manufacturer's instructions. They were randomly divided into two groups consisting of 50 samples: group I, without surface sealing, and group II, in which margins were etched and surface sealant was applied. After thermocycling, each group was divided into five subgroups, respectively, to represent the five aging treatments: group A = no further treatment (only thermocycling), B = toothbrushing, C = load cycling, D = toothbrushing followed by load cycling, and E = aging treatment in deionized water for six months. Microleakage was assessed by examining the penetration of 2% methylene blue dye. The following results were obtained: 1. At occlusal and cervical margins in groups without surface sealing, there was no significant difference in microleakage after the several aging treatments (p>0.05). 2. The occlusal margins of groups with surface sealing showed no significant differences after the several aging treatments (p>0.05). 3. In the cervical margins of groups with surface sealing, microleakage significantly increased after load cycling or aging in deionized water for six months (p<0.05). 4. The no-further-treatment group and the toothbrushing group with surface sealing showed less microleakage than the corresponding groups without surface sealing (p<0.05). 5. The surface-sealed groups with load cycling or aging in deionized water showed no significant difference in microleakage to the corresponding groups without surface sealing (p>0.05). In conclusion, the results of this study suggest that the surface sealant infiltrating through the gap of the cervical margin exerted a positive effect on microleakage at the initial stage, but the effect was not sufficient to overcome the stress generated by the cuspal flexure during occlusal loading and water absorption.

  • PDF

THE EFFECT OF REBONDING IN MICROLEAKAGE OF CLASS V RESTORATIONS UNDER LOAD CYCLING (부하순환 하에서 제V급 복합레진 수복물의 미세변연누출에 대한 재접착제의 효과에 관한 연구)

  • Youn, Yeon-Hee;Kim, Young-Jae;Kim, Jung-Wook;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • 제31권3호
    • /
    • pp.527-533
    • /
    • 2004
  • One clinical technique recommended for improving marginal integrity is "rebonding" or application of unfilled resins to the surface of composite restoration. But continuously the restorations are affected with occlusal load. There is room for doubt that the rebonding agent has the positive effect on microleakage in spite of the stress generated by the occlusal load. This study determined the effect of rebonding on microleakage of Class V resin composite restorations under load cycling. Class V cavities were prepared on the buccal surface of 40 sound extracted premolars and restored with a hybrid light-cured resin composite according to manufacturers' directions. They were randomly divided into two groups consisting of 20 samples: a control(group I), without surface sealing, and the other group(group II) in which margins were etched and rebonded. After thermocycling, each of groups was divided into subgroups(group A, B), and load cycling(total 100,000 cycles with 4-100N load at a rate of 1 Hz) were applied on the group B. Assessment of microleakage utilized methylene blue dye penetration. The following results were obtained: 1. In the occlusal region, no significant difference was noted in the scores regardless of whether or not the rebonding agent was used(group TA-IIA, IB-IIB)(p>0.05). 2. In the cervical region, the control group with rebonding(group IIA) showed the better result than the group without rebonding(group IA)(p<0.05). 3. In the cervical region, the rebonded group with load cycling(group IIB) showed similar results to the group without rebonding(group IB) and no significant difference was noted(p>0.05).

  • PDF

FEA estimates of margin design in all ceramic crowns (완전 도재관을 위한 지대치 형성시 변연 형태에 따른 응력 분포의 유한요소법적 비교)

  • Han, Sang-Hyun;Cho, Jung-Hyeon;Lee, En-Jung;Jeong, Suk-In;Oh, Nam-Sik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제46권1호
    • /
    • pp.1-11
    • /
    • 2008
  • Statement of problem: Over the past decade, increased demand for esthetically pleasing restorations has led to the development of all-ceramic systems. Recent reports suggest that the all-ceramic crowns have excellent physical properties, wear resistance, and color stability. In addition, numerous ceramics have excellent biocompatibility, a natural appearance, and improved physical bonding with resin composite luting agents. However, the brittle nature of ceramics has been a major factor in their restriction for universal usage. Functional occlusal loading can generate stress in the luting agent, and the stress distribution may be affected by the marginal geometry at the finish line. Tooth preparation for fixed prosthodontics requires a decision regarding the marginal configuration. The design dictates the shape and bulk of the all ceramic crowns and influences the fit at the margin. Purpose: The purpose of this study was to evaluate the stress distribution within marginal configurations of all- ceramic crowns (90-degree shoulder, 110-degree shoulder, 135-degree shoulder). Material and methods: The force is applied from a direction of 45 degrees to the vertical tooth axis. Three-dimensional finite element analysis was selected to determine stress levels and distributions. Results and conclusion: The result of stress level for the shoulder marginal configuration was more effective on stress distribution at 135-degree shoulder margin. But the stresses concentrated around at 135-degree shoulder margin. The stress decreased apically at the surface between cements and alumina core, and increased apically at the surface between alumina core and veneering porcelain.