• 제목/요약/키워드: Obstacle information

검색결과 785건 처리시간 0.024초

능률적이고 안정된 로보트 경로계획 알고리즘 개발에 관한 연구 (An Efficient and Robust Robot Path Planning Algorithm)

  • 이승철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.823-825
    • /
    • 1995
  • This paper presents an efficient and robust robot path planning technique that can always find a path, if one exists, in a densely cluttered, unknown and unstructured obstacle environment. The terrain in which the robot is expected to navigate is represented as a tesselated grid of square cells. The generated path is resolution complete and also resolution optimal once the terrain is fully explored by the robot or all the information about the terrain is given. The technique enables the accurate wave propagation to the diagonally adjacent cells and facilitates the implementations of various essential features for a real-time path planner such as partial updates and parallel computations.

  • PDF

자율형 무인운반차를 위한 이동경로의 생성에 관한 연구 (A Study on Moving Path Generation for Autonomous Vehicle)

  • 임재국;이동형
    • 산업경영시스템학회지
    • /
    • 제21권45호
    • /
    • pp.47-56
    • /
    • 1998
  • This paper describes a moving path generation method for the Autonomous vehicles (AV) to search for paths in an unknown environment by using fixed obstacle information. Algorithms for the AV which were recently proposed have some problems, so it was difficult to utilize these algorithms in the real world. The purpose of this research is to examine the applicability of real-time control and efficient improvement by reducing calculation iterations. In the network which is constructed by the cell-decomposition method, a gate is installed in each cell. By verifying the possibility of gate pass-over, the number of cells which should be considered to find the solution can be reduce. Therefore, algorithm iterations can be dramatically improved. In this paper we have proven that path-generated algorithms are efficient by using simulation.

  • PDF

공벌레의 보행패턴 분석을 통한 소형로봇의 주행 메커니즘 설계 (Design of the Locomotive Mechanism by Analysis on Behavior of Pill Bugs for a Small Robot)

  • 박종원;김홍진;김영국;김수현
    • 제어로봇시스템학회논문지
    • /
    • 제18권2호
    • /
    • pp.81-86
    • /
    • 2012
  • Reconnaissance robots can reduce the danger of hazardous places by providing information before human personnel take action. For the usage, robot platform should be small and light. However, this fact leads to a scaling issue with terrain that landscape poses a huge obstacle for the vehicle. The problem can be solved by the inspiration of nature. This paper presents design of the locomotive mechanism inspired by Pill bugs. The mechanism was designed by the principles of a pill bug's locomotion and experiments were conducted to validate the mechanism.

Lateral Offset Estimation Based on Detection of Lane Markings

  • Jiang, Gang-Yi;Park, Jong-Wook;Song, Byung-Suk;Bae, Jae-Wook
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.769-772
    • /
    • 2000
  • In this paper, a new lateral offset estimation method, based on image processing techniques, is proposed for driver assistant system. A new description on lane markings in the image plane is presented, and its properties are discussed and used to detect lane markings. Multi-frame lane detection and analysis are adopted to improve the proposed lateral control method. An algorithm for obstacle detection is also developed. Experimental results show that the proposed method performs lateral control effectively.

  • PDF

Analysis of landing site for lander and rover on Moon and Mars

  • 서행자;김어진;김주현;이주희;최기혁;심은섭
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.105.1-105.1
    • /
    • 2012
  • Moon and Mars have been explored by landers and rovers. Apollo missions landed five times on Lunar surface, and various rovers, including Curiosity landed and explored Mars. The selection of landing site have to be considered engineering and scientific side: the landing site to be available to land stably? the obstacle is not around the rover such as rocks and pothole? the landing site is valuable with scientific? And then landing site have to be the place which is satisfied two objects. We search the information about landing sites of Moon and Mars, and compile the conditions of landing sites. We expect that these data are useful when the landing site of Moon or Mars for Korean mission is selected.

  • PDF

경사/ 장애물/ 특수 표면을 이동할 수 있는 얀센 매커니즘 기반의 보행기구 설계 (walking mechanism design based on Jansen mechanism for moving slope/ obstacle/ special surface)

  • 김소원;박영철;전은서
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.463-466
    • /
    • 2016
  • This study has designed a walking mechanism that is able to pass by a variety of environments, such as slope, obstructions, special surface in there, the mechanism suggested by Janssen has shown an ideal bridge structure made of 11 joints. V in the study, these programs are use that is m-sketch, m-designer, Janssen mechanism optimization solver for the optimum design of m-sketch, 3D component reflecting the given strip dimension is used because there is a limit in the given. As a result, a stable mechanism for walking could be implemented.

  • PDF

경사/장애물/특수 표면을 이동할 수 있는 얀센 매커니즘 기반의 보행기구 설계 (Pass obstacle walking robot using Jansen mechanism)

  • 송치광;박정빈;최훈;김종혁;안현겸;이건희
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.477-480
    • /
    • 2016
  • Based on the Jansen mechanism theory, a walking robot is developed, which is able to overcome the given obstacles. Taking joint positions and leg directions as design parameters, the walking robot is analyzed. In order to analyze and optimize the leg motion, Edison program and Jansen mechanism optimization solver are used, respectively. It is found that Edison program is so effective to determine joint variables and position of leg direction. With the help of these programs, lots of trials or errors could be saved.

  • PDF

얀센 메커니즘을 활용한 보행체 (Eight Legs walker by using janssen mechanism)

  • 석준영;홍준기
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.485-488
    • /
    • 2016
  • In this paper, the mechanism that works by using eight legs is proposed. The walker has eleven bars instead of wheel, it shows a Biologically-inspired movement method. their driving appearance is very similar with creature which walks by its legs. For example, a crab and spider so on. This mechanism has simple style that can expand its size and attach more legs beside. For the competition regulation, we had to find working parts in the science box and some other things that can be found easily in the surroundings only usual material. The mission is making a machine that is enable to pass obstacle and to walk well. This paper followed the rules by regulation.

  • PDF

Theo Janson Mechanism 을 이용한 보행 로봇 설계 (Designing walking robot using Theo Jansen Mechanism)

  • 이병철
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.411-416
    • /
    • 2016
  • Existing moving robots has several kinds of moving method; using wheel, jointed leg structure and so on. Wheel type can be operated by DC motor so it is simple and efficient. However, it is not appropriate to pass irregular terrain and obstacle. Leg structure type has an advantage in those cases. Generally, Leg structure is operated by several servo motors attached to each joint. It makes a robot heavier and more complicate due to increase of the degree of freedom. However, by using Theo Jansen Mechanism, one (or more) leg have only single-degree of freedom and can be operated by only one DC motor. So leg structure using Theo Jansen Mechanism will be good choice if robots have to be mass-produced. This paper describes the following a walking robot designed and produced based on Theo Jansen Mechanism, simulating process of Theo Jansen leg structure using Edison m.Sketch and how to solve several of discovered problem of the robot.

  • PDF

능률적인 3차원 경로계획 알고리즘 개발에 관한 연구 (An Efficient 3-D Path Planning Algorithm for Robot Navigation)

  • 이승철;양원영;김용환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1208-1211
    • /
    • 1996
  • In this paper, an efficient and robust robot path planning technique is discussed. Concentric Ripple Edge Evaluation and Progression( CREEP ) algorithm[1] has been elaborated and expanded to carry out 3-D path planning. Like the 2-D case, robot can always find a path, if one exists, in a densely cluttered, unknown and unstructured 3-D obstacle environment. 3-D space in which the robot is expected to navigate is modeled by stacking cubic cells. The generated path is resolution optimal once the terrain is fully explored by the robot or all the information about the terrain is given. Path planning times are significantly reduced by local path update. Accuracy and efficiency of wave propagation in CREEP algorithm are achieved by virtual concentric sphere wave propagation. Simulations in 2-D and 3-D spaces are performed and excellent results are demonstrated.

  • PDF