IEMEK Journal of Embedded Systems and Applications
/
v.10
no.3
/
pp.179-188
/
2015
We propose obstacle classification method based on 2D LIDAR(Light Detecting and Ranging) database. The existing obstacle classification method based on 2D LIDAR, has an advantage in terms of accuracy and shorter calculation time. However, it was difficult to classifier the type of obstacle and therefore accurate path planning was not possible. In order to overcome this problem, a method of classifying obstacle type based on width data of obstacle was proposed. However, width data was not sufficient to improve accuracy. In this paper, database was established by width, intensity, variance of range, variance of intensity data. The first classification was processed by the width data, and the second classification was processed by the intensity data, and the third classification was processed by the variance of range, intensity data. The classification was processed by comparing to database, and the result of obstacle classification was determined by finding the one with highest similarity values. An experiment using an actual autonomous vehicle under real environment shows that calculation time declined in comparison to 3D LIDAR and it was possible to classify obstacle using single 2D LIDAR.
Journal of Institute of Control, Robotics and Systems
/
v.22
no.4
/
pp.253-265
/
2016
We propose an obstacle classification method using multi-decision factors and decision sections based on Single 2D LiDAR. The existing obstacle classification method based on single 2D LiDAR has two specific advantages: accuracy and decreased calculation time. However, it was difficult to classify obstacle type, and therefore accurate path planning was not possible. To overcome this problem, a method of classifying obstacle type based on width data was proposed. However, width data was not sufficient to enable accurate obstacle classification. The proposed algorithm of this paper involves the comparison between decision factor and decision section to classify obstacle type. Decision factor and decision section was determined using width, standard deviation of distance, average normalized intensity, and standard deviation of normalized intensity data. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 2D LiDAR-based method, thus demonstrating the possibility of obstacle type classification using single 2D LiDAR.
The Transactions of The Korean Institute of Electrical Engineers
/
v.57
no.4
/
pp.677-685
/
2008
This paper proposes algorithm for the obstacle detection and classification using a single laser scanner. In a measurement data from a laser scanner, there exist points with large differential value called singular points, which can be used to obtain the boundary of an obstacle such that obstacle information can be analyzed. On the other hand, measurement data include a lot of measurement error, which makes it difficult to analyze the accurate obstacle information. To solve this problem, the least square estimation algorithm is used to obtain the accurate information using a single laser scanner, by compensation for the measurement error. This algorithm can be used for the effective obstacle avoidance of mobile robots, and the experimental results are included to demonstrate the effectiveness of the propose algorithm.
Journal of the Korea Institute of Military Science and Technology
/
v.15
no.1
/
pp.1-8
/
2012
Obstacle detection is much studied by using sensors such as laser, vision, radar and ultrasonic in path planning for UGV(Unmanned Ground Vehicle), but not much reported about its characterization. In this paper not only an obstacle classification method using 2-dimensional LMS(Laser Measurement System) but also a decision making method whether to avoid or traverse the obstacle is proposed. The basic idea of decision making is to classify the characteristics by 2D laser scanned data and intensity data. Roughness features are obtained by range data using a simple linear regression model. The standard deviations of roughness and intensity data are used as measures for decision making by comparing with those of reference data. The obstacle classification and decision making for the UGV can facilitate a short path to the target position and the survivability of the robot.
This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.
This paper proposes obstacle detection and classification algorithm using a single laser scanner. The proposed algorithm searches the object singular points using a differential equation, and finds obstacle singular points shows a boundary of obstacle. And the proposed algorithm can classify object even if several obstacles overlapped. Simulation results show the feasibility of proposed algorithm using a single laser scanner, not using several laser scanners.
Kim, Seung-Gi;Lee, Yong-Chan;Ahn, Sung-Su;Lee, Yun-Jung
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.8
/
pp.1089-1098
/
2018
In this paper, we propose an autonomous feeding robot and its obstacle classification system using ultrasonic sensors to secure the driving safety of the robot and efficient feeding operation. The developed feeding robot is verified by operation experiments in a cattle shed. In the proposed classification algorithm, not only the maximum amplitude of the ultrasonic echo signal but also two gradients of the signal and the variation of amplitude are considered as the feature parameters for object classification. The experimental results show the efficiency of the proposed classification method based on the Support Vector Machine, which is able to classify objects or obstacles such as a human, a cow, a fence and a wall.
The tire manufacturing process demands classification of tire types when the tires are transferred between the inner processes. Though most processes are being well automated, the classification relies greatly upon the visual inspection of humen. This has been an obstacle to the factory automation of tire manufacturing companies. This paper proposes an effective vision systems which can be usefully applied to the tire classification process in real time. The system adopts a parallel architecture using multiple transputers and contains the algorithms of preprocesssing for character recognition. The system can be easily expandable to manipulate the large data that can be processed seperately.
Journal of the Korea Institute of Military Science and Technology
/
v.12
no.4
/
pp.516-523
/
2009
Recently, the applications of unmanned robots are increasing in various fields including surveillance and reconnaissance, planet exploration and disaster relief. To perform their missions with success, the robots should be able to evaluate terrain's characteristics quantitatively and identify traversable regions to progress toward a goal using mounted sensors. Recently, the authors have proposed techniques that extract terrain information and analyze traversability for off-road navigation of an unmanned robot. In this paper, we examine the use of 3D world models(terrain maps) to classify obstacle and safe terrain for increasing the reliability of the proposed techniques. A world model is divided into several patches and each patch is classified as belonging either to an obstacle or a non-obstacle using three types of metrics. The effectiveness of the proposed method is verified on real terrain maps.
Transactions of the Korean Society of Mechanical Engineers A
/
v.37
no.2
/
pp.169-176
/
2013
To generate the walking path of a humanoid robot in an unknown environment, the shapes of obstacles around the robot should be detected accurately. However, doing so incurs a very large computational cost. Therefore this study proposes a method to classify the obstacle shape into three types: a shape small enough for the robot to go over, a shape planar enough for the robot foot to make contact with, and an uncertain shape that must be avoided by the robot. To classify the obstacle shape, first, the range and the number of the obstacles is detected. If an obstacle can make contact with the robot foot, the shape of an obstacle is accurately derived. If an obstacle has uncertain shape or small size, the shape of an obstacle is not detected to minimize the computational load. Experimental results show that the proposed algorithm efficiently classifies the shapes of obstacles around the robot in real time with low computational load.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.