Fun and happiness are the intrinsic values of the human beings. Game is one of the most efficient tools which satisfies those intrinsic values. Approaches and methods combining game and education to provide the enjoyable education environments have been increasing. As use of gamification in corporate and school education environments for human resources is increasing, significant voices of concern on the limitations and side effects of combining game and education are continuously increasing. The purpose of this paper is to energize the use of gamification in education environments by clarifying the limitations and side effects of gamification and seeking ways to overcome those factors. This paper summarizes an observational research on the limitations and side effects of gamification in education environments, and provides the interviewees' opinions on gamified classes.
International Journal of Computer Science & Network Security
/
v.22
no.1
/
pp.21-26
/
2022
This study touched on the effect of the different electronic course designs on the programming skills of university students. The researcher used the experimental research design of a quasi-experimental of two experimental groups to achieve the objectives of the study. The first group underwent an electronic course designed in the holistic pattern, and the second group was taught a course in a sequential pattern. This experimental design was intended to measure the impact of these two learning modes on the learners' cognitive and performance achievement of programming skills. An achievement test and observational form were the data collection tools. Data were analyzed statistically using Pearson correlation, Mann Whitney Test, and Alpha Cronbach. The findings revealed statistically- significant differences between the mean scores of the students of the first and second experimental groups in favor of the former concerning the observational form and the latter in the cognitive test. Based on the findings, some recommendations are suggested. Due to their effectiveness in the educational process, expanding using the e-courses at universities is vital. The university teachers are highly recommended to design e-courses and provide technical and material support to the e-courses user to fulfill their design purpose.
The purpose of this study was to examine the learning outcome of problem-based learning as an efficient teaching method to improve the competencies of great talents for future society. A general education course of a university that was one of teaching profession courses titled "prevention of school violence and countermeasures" was provided in the form of PBL, and data were gathered, which were reflective journals, evaluation sheet and observational journals. As a result, PBL produced learning effects such as understanding and applying learning contents, fostering cooperativeness, problem-solving skills and a sense of responsibility, extended thinking and good understanding of PBL. Also, that provided a great opportunity for the students to build up their character by learning caring and by improving cooperativeness, a sense of responsibility and communicative competency, which preservice teachers should have. The findings of the study suggest that the expansion of PBL is necessary to bolster problem- solving skills, self-directed learning, cooperativeness and creativity that are competencies required in the era of the Fourth Industrial Revolution.
We report the discovery of four quasars with M1450 ≳ -25.0 mag at z ~ 5 and supermassive black hole mass measurement for one of the quasars. They were selected as promising high-redshift quasar candidates via deep learning and Bayesian information criterion, which are expected to be effective in discriminating quasars from the late-type stars and high-redshift galaxies. The candidates were observed by the Double Spectrograph on the Palomar 200-inch Hale Telescope. They show clear Lyα breaks at about 7000-8000 Å, indicating they are quasars at 4.7 < z < 5.6. For HSC J233107-001014, we measure the mass of its supermassive black hole (SMBH) using its C IV λ1549 emission line. The SMBH mass and Eddington ratio of the quasar are found to be ~108 M⊙ and ~0.6, respectively. This suggests that this quasar possibly harbors a fast growing SMBH near the Eddington limit despite its faintness (LBol < 1046 erg s-1). Our 100% quasar identification rate supports high efficiency of our deep learning and Bayesian information criterion selection method, which can be applied to future surveys to increase high-redshift quasar sample.
Much of our experiments are designed to uncover the cause(s) and effect(s) behind a phenomenon (i.e., data generating mechanism) we happen to be interested in. Uncovering such relationships allows us to identify the true workings of a phenomenon and, most importantly, to realize and articulate a model to explore the phenomenon on hand and/or allow us to predict it accurately. Fundamentally, such models are likely to be derived via a causal approach (as opposed to an observational or empirical mean). In this approach, causal discovery is required to create a causal model, which can then be applied to infer the influence of interventions, and answer any hypothetical questions (i.e., in the form of What ifs? Etc.) that commonly used prediction- and statistical-based models may not be able to address. From this lens, this paper builds a case for causal discovery and causal inference and contrasts that against common machine learning approaches - all from a civil and structural engineering perspective. More specifically, this paper outlines the key principles of causality and the most commonly used algorithms and packages for causal discovery and causal inference. Finally, this paper also presents a series of examples and case studies of how causal concepts can be adopted for our domain.
Le, Xuan-Hien;Nguyen, Giang V.;Jung, Sungho;Lee, Giha
Proceedings of the Korea Water Resources Association Conference
/
2022.05a
/
pp.148-148
/
2022
Spatiotemporal precipitation data is one of the primary quantities in hydrological as well as climatological studies. Despite the fact that the estimation of these data has made considerable progress owing to advances in remote sensing, the discrepancy between satellite-derived precipitation product (SPP) data and observed data is still remarkable. This study aims to propose an effective deep learning model (DLM) for bias correction of SPPs. In which TRMM (The Tropical Rainfall Measuring Mission), CMORPH (CPC Morphing technique), and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) are three SPPs with a spatial resolution of 0.25o exploited for bias correction, and APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data is used as a benchmark to evaluate the effectiveness of DLM. We selected the Mekong River Basin as a case study area because it is one of the largest watersheds in the world and spans many countries. The adjusted dataset has demonstrated an impressive performance of DLM in bias correction of SPPs in terms of both spatial and temporal evaluation. The findings of this study indicate that DLM can generate reliable estimates for the gridded satellite-based precipitation bias correction.
This study has established a fashion illustration education plan using the contour drawing that fosters observational ability and enables creative drawing. This study developed two illustration curriculum proposals consisting of 15 weeks, combining literature and case studies. The researchers organized a step-by-step teaching plan that utilizes contour drawing according to the three stages of fashion illustration classes: foundation courses, general courses, and intensive courses. When the contour drawing is used at the beginning stage of the foundation courses of fashion illustration, it can be used as a technique to reduce the fear of students about practical skills, induce interest in illustration, and cultivate observation ability about objects. In general process, it is combined with various tools and coloring materials to strengthen expression power, and it is possible to produce detailed expressions and illustrations about human body and clothing. In intensive courses, it is expanded to the production of creative works with new aesthetics through digital techniques and mixed materials. As such, the contour drawing is expanded in various ways according to the learning contents and goals of each step, and is flexibly adjusted according to the learning content. Contour drawing has the effect of acquiring observation and expression ability, and it is analyzed as a technique that enables the production of creative illustration of students.
This study examines the effects of reflective journal writing on the mathematics self-efficacy in reciprocal peer tutoring. Participants were 38 high school students in Gyeonggi province who attended at a summer intensive mathematics course for 4 weeks. This study used a mixed method. SPSS 21.0 program was used to analyze the quantitative data, and the interviews, observational journals and reflective journals of 6 students were used to analyze qualitative data. According to the results, all the subcategories of mathematics self-efficacy, - mathematics problem-efficacy, mathematics success-efficacy, mathematics learning-efficacy, and mathematics subject-efficacy - improved except mathematics occupation-efficacy. In case of mathematics success-efficacy and mathematics problem-efficacy, students revealed the greatest improvement. In conclusion, reflective journal writing in reciprocal peer tutoring could be suggested as a treatment program to improve students' mathematics self-efficacy.
Gravity Recovery and Climate Experiment (GRACE) gravimeter satellites observed the Earth gravity field with unprecedented accuracy since 2002. After the termination of GRACE mission, GRACE Follow-on (GFO) satellites successively observe global gravity field, but there is missing period between GRACE and GFO about one year. Many previous studies estimated terrestrial water storage (TWS) changes using hydrological models, vertical displacements from global navigation satellite system observations, altimetry, and satellite laser ranging for a continuity of GRACE and GFO data. Recently, in order to predict TWS changes, various machine learning methods are developed such as artificial neural network and multi-linear regression. Previous studies used hydrological and climate data simultaneously as input data of the learning process. Further, they excluded linear trends in input data and GRACE/GFO data because the trend components obtained from GRACE/GFO data were assumed to be the same for other periods. However, hydrological models include high uncertainties, and observational period of GRACE/GFO is not long enough to estimate reliable TWS trends. In this study, we used convolutional neural networks (CNN) method incorporating only climate data set (temperature, evaporation, and precipitation) to predict TWS variations in the missing period of GRACE/GFO. We also make CNN model learn the linear trend of GRACE/GFO data. In most river basins considered in this study, our CNN model successfully predicts seasonal and long-term variations of TWS change.
We apply a modified Convolutional Neural Network (CNN) model in conjunction with transfer learning to predict whether an active region (AR) would produce a ≥C-class or ≥M-class flare within the next 24 hours. We collect line-of-sight magnetogram samples of ARs provided by the SHARP from May 2010 to September 2018, which is a new data product from the HMI onboard the SDO. Based on these AR samples, we adopt the approach of shuffle-and-split cross-validation (CV) to build a database that includes 10 separate data sets. Each of the 10 data sets is segregated by NOAA AR number into a training and a testing data set. After training, validating, and testing our model, we compare the results with previous studies using predictive performance metrics, with a focus on the true skill statistic (TSS). The main results from this study are summarized as follows. First, to the best of our knowledge, this is the first time that the CNN model with transfer learning is used in solar physics to make binary class predictions for both ≥C-class and ≥M-class flares, without manually engineered features extracted from the observational data. Second, our model achieves relatively high scores of TSS = 0.640±0.075 and TSS = 0.526±0.052 for ≥M-class prediction and ≥C-class prediction, respectively, which is comparable to that of previous models. Third, our model also obtains quite good scores in five other metrics for both ≥C-class and ≥M-class flare prediction. Our results demonstrate that our modified CNN model with transfer learning is an effective method for flare forecasting with reasonable prediction performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.