• Title/Summary/Keyword: Objects Tracking

Search Result 761, Processing Time 0.026 seconds

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

Classification and Tracking of Unknown Multiple Underwater Moving Objects Using Neural Networks (신경망에 의한 미지의 다중 수중 이동물체의 판별 및 추적)

  • 하석운
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.389-396
    • /
    • 1999
  • In this paper, we propose a multiple underwater object classification and tracking algorithm using the narrowband tonal and frequency line features extracted from the frequency spectrum of the acoustic signal. The general algorithm using the wideband and narrowband energy has a high tracking error when objects are close and cross each other. But the proposed algorithm shows a good tracking performance for the simulation scenarios generated by the real acoustic data.

  • PDF

Object Tracking of Mobile Robots using Hough Transform (Hough Transform을 이용한 이동 로봇의 물체 추적)

  • Jung, Kyung-Kwon;Shin, Heon-Soo;Lee, Hyun-Kwan;Eom, Ki-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.819-822
    • /
    • 2007
  • In this paper, we propose an object-tracking of mobile robots using CHT(Circular Hough transform) algorithm. The proposed method extracts the region of moving objects using 1-D projection algorithm, and detects circular objects using CHT. In order to verify the effectiveness of the proposed tracking method, we perform experiments of ball shape object-tracking using mobile robot based on ARM processor with CMOS camera.

  • PDF

Fuzzy Based Shadow Removal and Integrated Boundary Detection for Video Surveillance

  • Niranjil, Kumar A.;Sureshkumar, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2126-2133
    • /
    • 2014
  • We present a scalable object tracking framework, which is capable of removing shadows and tracking the people. The framework consists of background subtraction, fuzzy based shadow removal and boundary tracking algorithm. This work proposes a general-purpose method that combines statistical assumptions with the object-level knowledge of moving objects, apparent objects, and shadows acquired in the processing of the previous frames. Pixels belonging to moving objects and shadows are processed differently in order to supply an object-based selective update. Experimental results demonstrate that the proposed method is able to track the object boundaries under significant shadows with noise and background clutter.

Algorithm for Moving Object Tracking from Moving Camera Using Histogram Projection (히스토그램 프로젝션을 이용한 움직이는 카메라로 부터의 이동물체 추적 알고리즘)

  • 설성욱;이희봉;김효성;남기곤;이철헌
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.38-45
    • /
    • 2001
  • In this paper, we propose an algorithm for moving object tracking from moving camera using histogram back program intersection(HI) and XY-projection The proposed method segments objects using histogram back projection, matches tracing objects using histogram intersection and extracts them using XY- projection. Through the simulation this paper shows that the proposed method segments. matches and tracks objects without significant error image sequences obtained by moving camera.

  • PDF

Video-based Height Measurements of Multiple Moving Objects

  • Jiang, Mingxin;Wang, Hongyu;Qiu, Tianshuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3196-3210
    • /
    • 2014
  • This paper presents a novel video metrology approach based on robust tracking. From videos acquired by an uncalibrated stationary camera, the foreground likelihood map is obtained by using the Codebook background modeling algorithm, and the multiple moving objects are tracked by a combined tracking algorithm. Then, we compute vanishing line of the ground plane and the vertical vanishing point of the scene, and extract the head feature points and the feet feature points in each frame of video sequences. Finally, we apply a single view mensuration algorithm to each of the frames to obtain height measurements and fuse the multi-frame measurements using RANSAC algorithm. Compared with other popular methods, our proposed algorithm does not require calibrating the camera, and can track the multiple moving objects when occlusion occurs. Therefore, it reduces the complexity of calculation and improves the accuracy of measurement simultaneously. The experimental results demonstrate that our method is effective and robust to occlusion.

Multi-Class Multi-Object Tracking in Aerial Images Using Uncertainty Estimation

  • Hyeongchan Ham;Junwon Seo;Junhee Kim;Chungsu Jang
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.115-122
    • /
    • 2024
  • Multi-object tracking (MOT) is a vital component in understanding the surrounding environments. Previous research has demonstrated that MOT can successfully detect and track surrounding objects. Nonetheless, inaccurate classification of the tracking objects remains a challenge that needs to be solved. When an object approaching from a distance is recognized, not only detection and tracking but also classification to determine the level of risk must be performed. However, considering the erroneous classification results obtained from the detection as the track class can lead to performance degradation problems. In this paper, we discuss the limitations of classification in tracking under the classification uncertainty of the detector. To address this problem, a class update module is proposed, which leverages the class uncertainty estimation of the detector to mitigate the classification error of the tracker. We evaluated our approach on the VisDrone-MOT2021 dataset,which includes multi-class and uncertain far-distance object tracking. We show that our method has low certainty at a distant object, and quickly classifies the class as the object approaches and the level of certainty increases.In this manner, our method outperforms previous approaches across different detectors. In particular, the You Only Look Once (YOLO)v8 detector shows a notable enhancement of 4.33 multi-object tracking accuracy (MOTA) in comparison to the previous state-of-the-art method. This intuitive insight improves MOT to track approaching objects from a distance and quickly classify them.

Implementation of an improved real-time object tracking algorithm using brightness feature information and color information of object

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.21-28
    • /
    • 2017
  • As technology related to digital imaging equipment is developed and generalized, digital imaging system is used for various purposes in fields of society. The object tracking technology from digital image data in real time is one of the core technologies required in various fields such as security system and robot system. Among the existing object tracking technologies, cam shift technology is a technique of tracking an object using color information of an object. Recently, digital image data using infrared camera functions are widely used due to various demands of digital image equipment. However, the existing cam shift method can not track objects in image data without color information. Our proposed tracking algorithm tracks the object by analyzing the color if valid color information exists in the digital image data, otherwise it generates the lightness feature information and tracks the object through it. The brightness feature information is generated from the ratio information of the width and the height of the area divided by the brightness. Experimental results shows that our tracking algorithm can track objects in real time not only in general image data including color information but also in image data captured by an infrared camera.

Object Feature Extraction and Matching for Effective Multiple Vehicles Tracking (효과적인 다중 차량 추적을 위한 객체 특징 추출 및 매칭)

  • Cho, Du-Hyung;Lee, Seok-Lyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.789-794
    • /
    • 2013
  • A vehicle tracking system makes it possible to induce the vehicle movement path for avoiding traffic congestion and to prevent traffic accidents in advance by recognizing traffic flow, monitoring vehicles, and detecting road accidents. To track the vehicles effectively, those which appear in a sequence of video frames need to identified by extracting the features of each object in the frames. Next, the identical vehicles over the continuous frames need to be recognized through the matching among the objects' feature values. In this paper, we identify objects by binarizing the difference image between a target and a referential image, and the labelling technique. As feature values, we use the center coordinate of the minimum bounding rectangle(MBR) of the identified object and the averages of 1D FFT(fast Fourier transform) coefficients with respect to the horizontal and vertical direction of the MBR. A vehicle is tracked in such a way that the pair of objects that have the highest similarity among objects in two continuous images are regarded as an identical object. The experimental result shows that the proposed method outperforms the existing methods that use geometrical features in tracking accuracy.

Multiple Objection and Tracking based on Morphological Region Merging from Real-time Video Sequences (실시간 비디오 시퀀스로부터 형태학적 영역 병합에 기반 한 다중 객체 검출 및 추적)

  • Park Jong-Hyun;Baek Seung-Cheol;Toan Nguyen Dinh;Lee Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.40-50
    • /
    • 2007
  • In this paper, we propose an efficient method for detecting and tracking multiple moving objects based on morphological region merging from real-time video sequences. The proposed approach consists of adaptive threshold extraction, morphological region merging and detecting and tracking of objects. Firstly, input frame is separated into moving regions and static regions using the difference of images between two consecutive frames. Secondly, objects are segmented with a reference background image and adaptive threshold values, then, the segmentation result is refined by morphological region merge algorithm. Lastly, each object segmented in a previous step is assigned a consistent identification over time, based on its spatio-temporal information. The experimental results show that a proposed method is efficient and useful in terms of real-time multiple objects detecting and tracking.