For producing cement and concrete, the construction field has been encouraged by the usage of industrial soil waste (or) secondary materials since it decreases the utilization of natural resources. Simultaneously, for ensuring the quality, the analyses of the strength along with durability properties of that sort of cement and concrete are required. The prediction of strength along with other properties of High-Performance Concrete (HPC) by optimization and machine learning algorithms are focused by already available research methods. However, an error and accuracy issue are possessed. Therefore, the Enhanced Deep Neural Network (EDNN) based strength along with durability prediction of HPC was utilized by this research method. Initially, the data is gathered in the proposed work. Then, the data's pre-processing is done by the elimination of missing data along with normalization. Next, from the pre-processed data, the features are extracted. Hence, the data input to the EDNN algorithm which predicts the strength along with durability properties of the specific mixing input designs. Using the Switched Multi-Objective Jellyfish Optimization (SMOJO) algorithm, the weight value is initialized in the EDNN. The Gaussian radial function is utilized as the activation function. The proposed EDNN's performance is examined with the already available algorithms in the experimental analysis. Based on the RMSE, MAE, MAPE, and R2 metrics, the performance of the proposed EDNN is compared to the existing DNN, CNN, ANN, and SVM methods. Further, according to the metrices, the proposed EDNN performs better. Moreover, the effectiveness of proposed EDNN is examined based on the accuracy, precision, recall, and F-Measure metrics. With the already-existing algorithms i.e., JO, GWO, PSO, and GA, the fitness for the proposed SMOJO algorithm is also examined. The proposed SMOJO algorithm achieves a higher fitness value than the already available algorithm.
Rim, J.S.;Lee, S.R.;Cho, Y.S.;Kim, E.J.;Kim, J.S.;Ha, Jong K.
Asian-Australasian Journal of Animal Sciences
/
제21권5호
/
pp.677-684
/
2008
Accurate estimation of dry matter intake (DMI) is a prerequisite to meet animal performance targets without penalizing animal health and the environment. The objective of the current study was to evaluate some of the existing models in order to predict DMI when lactating dairy cows were offered a total mixed ration containing a high level of concentrates and locally produced agricultural by-products. Six popular models were chosen for DMI prediction (Brown et al., 1977; Rayburn and Fox, 1993; Agriculture Forestry and Fisheries Research Council Secretariat, 1999; National Research Council (NRC), 2001; Cornell Net Carbohydrate and Protein System (CNCPS), Fox et al., 2003; Fuentes-Pila et al., 2003). Databases for DMI comparison were constructed from two different sources: i) 12 commercial farm investigations and ii) a controlled dairy cow experiment. The model evaluation was performed using two different methods: i) linear regression analysis and ii) mean square error prediction analysis. In the commercial farm investigation, DMI predicted by Fuentes-Pila et al. (2003) was the most accurate when compared with the actual mean DMI, whilst the CNCPS prediction showed larger mean bias (difference between mean predicted and mean observed values). Similar results were observed in the controlled dairy cow experiment where the mean bias by Fuentes-Pila et al. (2003) was the smallest of all six chosen models. The more accurate prediction by Fuentes-Pila et al. (2003) could be attributed to the inclusion of dietary factors, particularly fiber as these factors were not considered in some models (i.e. NRC, 2001; CNCPS (Fox et al., 2003)). Linear regression analysis had little meaningful biological significance when evaluating models for prediction of DMI in this study. Further research is required to improve the accuracy of the models, and may recommend more mechanistic approaches to investigate feedstuffs (common to the Asian region), animal genotype, environmental conditions and their interaction, as the majority of the models employed are based on empirical approaches.
본 논문은 항공기 구조물의 체결용 홀(hole)을 냉간가공(cold working)할때 홀주변에 생성되는 잔류응력이 균열발생 수명과 균열성장에 미치는 영향을 연구한 내용이다. 항공기용 재료로 많이 사용되는 AL7075-T6 및 AL2024-T3 시편으로 측정된 계수를 Morrow의 수명예측식에 적용하여 수정된 냉간가공(cold working)에 관한 수명예측식을 제안하였다. 수정된 계산식으로 얻어진 수명예측값과 실험에 의하여 이미 알려진 값이 비교적 일치함을 보여 이러한 재료에 대하여 수명예측이 가능함을 보였다. 균열성장 예측을 위해 역시 AL7075-T6 재료에 대하여 가중함수(weight function)방법으로 잔류응력 세기계수를 구하여 Forman의 균열성장 예측식을 수정하여 계산 한 결과 이 또한 알려진 실험값과 거의 일치함을 보여 실험에 사용한 재료의 구조물 해석에 유용 할 것으로 보인다. 본 연구는 항공기용 구조물의 홀주변을 냉간가공 (cold working)할 때 생성되는 잔류응력의 영향을 연구하는 기초적인 단계 일 뿐이며, 향후 실제 정비현장에서 적용 할 수 있는 대상분야와 연구 방향에 대한 보다 심층적 연구가 필요함을 보인다.
태풍은 인류에 큰 피해를 주는 재난재해로 몇몇 선진국에서는 태풍으로 인한 건축물 피해액 사전예측 모델에 관한 연구가 진행되고 있다. 국내에서도 해외 연구를 토대로 국내에 적용시키는 연구가 진행되었지만, 태풍의 특성이나 크기 등이 차이가 나므로 국내에 적합한 모델이 필요한 실정이다. 또한, 국내의 연구는 태풍의 특성, 지역적 특성만을 고려하여 진행 하였으나, 태풍은 복합재해로서 태풍의 특성, 지리적 특성만이 아닌 태풍의 진로, 건설환경, 등 다양한 요인을 고려하여야한다. 이에 본 연구에서는 국내에 영향을 미친 태풍을 7가지 타입으로 분류하여 건물피해액 영향인자를 도출하고, 회귀분석을 실시하여 태풍 타입별 건물피해율 예측모델을 개발 목적으로 한다. 이는 선진국의 자연재해 예측모델들과 같이 국내의 상황에 맞는 태풍에 따른 피해를 예측하기 위한 모델 개발을 위한 자료로 활용 될 것이다.
초기설계 단계에서 시스템의 성능을 고려한 형상의 최적화가 필요하다. 하지만, 일반적으로 공학시스템의 성능예측은 많은 계산 시간이 요구되는 작업이다. 시스템 형상의 최적화를 위해서는 다양한 설계대안에 대한 성능의 평가가 요구되므로 초기 설계과정에서 많은 어려움이 있다. 이러한 문제를 해결하기 위해, 많은 연구자들은 응답표면방법을 이용한 성능예측에 관한 다양한 연구를 시도하고 있다. 하지만, 이 방법은 비선형성이 강한 문제에서 예측오차가 비교적 크게 발생하는 단점이 있다. 따라서 본 연구의 최종목표는 초기설계과정에서 성능예측을 위한 적절한 근사모델을 제시하고, 해양시스템 성능예측문제(부유식 해상발전기 하부구조물 최적화 문제, 유조선의 선저외판 최적화 문제)에 적용하여 제시된 근사모델을 검증하는 것이다.
It is commonly requested that the steam generator tubes wall-thinned in excess of 40% should be plugged. However, the plugging criterion is known to be too conservative for some locations and types of defects and its application is limited to a single crack in spite of the fact that the occurrence of multiple through-wall cracks is more common in general. The objective of this research is to propose the optimum failure prediction models for two adjacent through-wall cracks in steam generator tubes. The conservatism of the present plugging criteria was reviewed using the existing failure prediction models for a single crack, and six new failure prediction models for multiple through-wall cracks have been introduced. Then, in order to determine the optimum ones among these new local or global failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two adjacent through-wall cracks in thin plate were carried out. Thereby, the reaction force model, plastic zone contact model and COD (Crack-Opening Displacement) base model were selected as the optimum ones for assessment of steam generator tubes with multiple through-wall cracks. The selected optimum failure prediction models, finally, were used to estimate the coalescence pressure of two adjacent through-wall cracks in steam generator tubes.
인과 관계에 대한 직관적인 개념으로 Bayesian Networks 알고리즘이나 트리 구조 추측 알고리즘 그리고 유전자 알고리즘을 사용하여 다양한 구조의 상황을 예측을 하게 된다. 하지만 이런 예측 알고리즘들을 상황인지 서비스 구현에 적용하기에는 실제 구현의 어려움과 실시간 환경에서 트레이닝 데이터 처리에서 오는 시간 지연 문제 등이 발생하게 된다. 이 때문에 특정 목적의 상황인지 시스템에서 이 알고리즘들이 어느 정도의 예측 정확도와 신뢰도를 가지고 상황 정보에 부합하는지 미지수이다. 따라서 본 논문에서는 기존의 예측 알고리즘과는 다른 접근 방식을 통해, 사용자의 습관이나 행동양식을 데이터베이스로 만들어 이를 고려함으로써 상황인지 시스템의 상황 정보와 부합되는 Flexible Window 기법을 이용한 위치 예측 알고리즘을 제안한다. 제안된 Flexible Window 기법을 이용한 위치 예측 알고리즘은 동일한 실험 조건 아래, Fixed Window 기법을 이용한 위치 예측 알고리즘보다 평균적으로 5.10% 더 우수한 성능을 보인다. 이 방식은 기하급수적으로 늘어나는 상황 정보를 감안했을 때 알고리즘 수행 시 처리 시간의 감소와 예측 정확도를 향상 시킬 수 있다.
Fonseca, Joao Gari da Silva Junior;Ohtake, Hideaki;Oozeki, Takashi;Ogimoto, Kazuhiko
Journal of Electrical Engineering and Technology
/
제13권4호
/
pp.1504-1514
/
2018
The objective of this study is to compare the suitability of a non-parametric and 3 parametric distributions in the characterization of prediction intervals of photovoltaic power forecasts with high confidence levels. The prediction intervals of the forecasts are calculated using a method based on recent past data similar to the target forecast input data, and on a distribution assumption for the forecast error. To compare the suitability of the distributions, prediction intervals were calculated using the proposed method and each of the 4 distributions. The calculations were done for one year of day-ahead forecasts of hourly power generation of 432 PV systems. The systems have different sizes and specifications, and are installed in different locations in Japan. The results show that, in general, the non-parametric distribution assumption for the forecast error yielded the best prediction intervals. For example, with a confidence level of 85% the use of the non-parametric distribution assumption yielded a median annual forecast error coverage of 86.9%. This result was close to the one obtained with the Laplacian distribution assumption (87.8% of coverage for the same confidence level). Contrasting with that, using a Gaussian and Hyperbolic distributions yielded median annual forecast error coverage of 89.5% and 90.5%.
IT자산은 조직의 경영목적을 지원해주는 핵심영역이며, IT자산의 장애 발생시 신속한 처리를 지원하는 것은 매우 중요하다. 본 연구에서는 IT자산의 장애가 발생할 경우, 장애해결을 위하여 기존의 장애 데이터를 기초로 장애처리 예측 기법을 제시한다. 제안한 장애처리 예측 기법은 첫째, 기존의 장애처리 데이터를 전처리하여 장애처리 유형별로 분류하고 둘째, 분류된 장애처리 유형과 장애 발생 후 접수된 내용을 키워드 매핑시키는 규칙을 제정하였으며 셋째, 제정된 규칙에 의하여 장애 발생 후 장애처리 방법이 사전에 예측 가능한 기계학습 프로세스를 제시하였다. 제시한 기계학습 프로세스의 유효성을 입증하기 위하여 A사에서 6개월 동안 접수된 33,000여건의 전산기기 장애 데이터를 실험한 결과 장애처리 예측의 적중률이 약 72%였으며, 지속적인 기계학습을 통하여 81%로 향상되었다.
이 연구의 목적은 비대칭 분포를 가지는 현장 조사 자료로부터 GIS 기반 주제도를 생성하기 위한 공간 내삽 방법으로 단변량 크리깅 기법을 비교하는데 있다. 기존 정규 크리깅과 비선형 자료 변환에 기반을 둔 로그 정규 크리깅, 다중 가우시안 크리깅과 지시자 크리깅을 지화학 원소 비소와 납에 대해 사례 연구를 통해 비교하였다. 예측 능력의 비교 분석을 위해 leave-one-out 기반 교차 검증을 통한 오차 분석을 수행하였으며, 샘플링 밀도의 차이에 따른 오차의 변화 양상도 분석하였다. 비교 분석 결과, 지시자 크리깅이 전반적으로 가장 높은 예측 능력을 나타내었으며, 작은 값과 높은 값의 예측 능력도 우수한 것으로 나타났다. 정규 크리깅에 비해 비선형 자료 변환 기반 크리깅 기법들이 우수한 예측 능력을 나타내었지만, 기존에 많이 적용된 로그 정규 크리깅은 샘플링 밀도와 상관없이 편향 정도가 가장 크게 나타내었다. 이 연구를 통해 얻어지는 정량적 검증 결과는 비대칭 분포를 가지는 현장 조사 자료의 내삽을 위한 크기깅 기법의 선정에 유용하게 이용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.