• Title/Summary/Keyword: Object-oriented technology

검색결과 369건 처리시간 0.022초

의료 데이터 산업을 위한 비정형 데이터 비식별화 정책에 관한 연구 (A study on the policy of de-identifying unstructured data for the medical data industry)

  • 이선진;박태림;김소희;오영은;이일구
    • 융합보안논문지
    • /
    • 제22권4호
    • /
    • pp.85-97
    • /
    • 2022
  • 빅데이터 기술이 발전하면서 데이터가 전 산업의 혁신 성장을 가속하는 초연결 지능화 사회로 빠르게 진입하고 있다. 고품질의 다양한 데이터를 보유하고 활용하는 융복합 산업이 새로운 성장 동력으로 자리매김하고 있으며, 다양한 전통 산업군에 빅데이터가 융합되어 데이터 기반의 혁신을 통해 디지털 전환이 이루어지고 있다. 특히 의료 분야에서는 전자의무기록 데이터와 같은 정형 데이터와 CT, MRI 등의 비정형 의료 데이터를 함께 활용함으로써, 질병 예측 및 진단의 정확도를 높이고 있다. 현재 의료 산업에서 비정형 데이터의 중요성과 규모는 나날이 증가하고 있지만, 종래의 데이터 보안 기술과 정책은 정형 데이터 중심이며, 비정형 데이터의 보안성과 활용성에 대한 고려는 미비하다. 향후 빅데이터를 활용한 진료가 활성화되려면 데이터의 다양성과 보안성이 데이터 구축, 유통, 활용 단계에서 내재화되고 유기적으로 연계되어야 한다. 본 논문에서는 국내외 데이터 보안 제도와 기술 현황을 분석한다. 이후 의료 분야에서 비정형 데이터가 활발히 사용될 수 있도록 비식별조치 가이드라인에 비정형 데이터 중심의 비식별 기술과 산업에서의 기술 적용 사례를 추가하고, 비정형 데이터에 대한 개인정보 판단 기준을 수립할 것을 제안한다. 더 나아가 개인정보를 침해하지 않고, 비정형 데이터에 활용할 수 있는 객체 특징 기반의 식별 ID를 제안한다.

시대 변화에 대응하는 국가기본도 정의에 관한 연구 (A Study on the Definition of National Base Map in Response to the Changing Times)

  • 김기홍;이용욱;이상호;박홍기
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.579-586
    • /
    • 2019
  • 우리나라 국가기본도는 공간정보산업의 급속한 발전에 따라 그 활용성이 커지고 있으며, 과거 종이지도 시대의 단순 활용 차원을 넘어서 IT (Information Technology) 기술 혁명을 통한 스마티 시티와 디지털 트윈 시대의 핵심공간정보로서의 역할이 요구되고 있다. 이에 따라 연속화, 다축척, 객체화, 맞춤형 생산, 실시간 갱신의 개념들이 등장하였으며 인터넷을 통해 서비스하는 유통과정의 혁신도 이루어지고 있다. 이러한 국가기본도의 위상에 걸맞는 개념의 정립과 법률상에서의 정의가 뒷받침되어야 함에도 불구하고, 아직까지 1980년 측량법으로 도입된 종이지도 형태의 개념과 정의가 존속되고 있는 실정이다. 이러한 용어의 정의는 현재의 기술발달 및 사회적인 요구에 부응할 수 없고 대다수 국민의 인식은 물론 국가기본도를 관리하고 있는 정부조직의 실무적인 능력도 반영하지 못하고 있다. 따라서 현재의 상황에 맞는 기본도의 개념을 정립하고 이를 법률상에서 정의할 수 있어야 한다. 본 연구에서는 기본도의 발전과정 및 시대적 변화 상황과 미국, 영국, 일본의 사례를 종합적으로 분석한 후 국가기본도의 개념을 정립하고 정의하였다.

GIS기반 분묘관리시스템의 구축 및 적용 (Construction and Applicability of GIS-Based Grave Management System)

  • 이진덕;이승환
    • 한국지리정보학회지
    • /
    • 제14권4호
    • /
    • pp.208-220
    • /
    • 2011
  • 국토 공간이 한정되어 있는데다 분묘의 이용 및 설치에 관한 국가적, 사회적 관리 기반이 미비된 현실에서 우리나라의 전통적인 매장 위주의 묘지설치 관행은 체계적인 국토관리와 도시개발을 저해할 뿐 아니라 자연환경 및 주민생활 공간에 영향을 미쳐 심각한 갈등 요인이 되곤 한다. 정부 및 지방자치단체에서는 "장사등에관한법률" 등을 제정하여 대응을 하고 있으나, 통일된 지리 공간의 기반 위에서 축적된 개별 분묘들에 대한 정보 부재와 관리시스템의 미비로 인해 많은 문제점을 시사하고 있다. 이에 본 연구에서는 관할 행정관청에서 개별묘지 관리를 위주로 하는 GIS 기반 분묘관리시스템을 개발하고 대상지역에 적용하여 타당성을 분석하고자 하였다. 행정체계 또는 조사에 의해 수집되는 분묘에 관한 정보를 데이터베이스로 구축하고, 이를 본 시스템을 통해 시한부 매장제도, 무연분묘 관리 등에 활용될 수 있음을 제시할 수 있었다. 또한 문중 중심의 장묘문화의 전통 하에서 현세 및 후대의 자손들에게 전승할 수 있는 체계적인 선산분묘관리 방법이 될 수 있을 것이다.

축약형 신경망과 휴리스틱 검색에 의한 소프트웨어 공수 예측모델 (Parsimonious Neural Network and Heuristic Search Method for Software Effort Estimation Model)

  • 전응섭
    • 정보처리학회논문지D
    • /
    • 제8D권2호
    • /
    • pp.154-165
    • /
    • 2001
  • 소프트웨어공수 예 에 관한 전공적인 모델링의 한계점을 극복하기 위해 사례기반과 신경망 그리고 퍼지이론 및 전문가 시스템 등 인공지능 기법을 이용한 연구들이 제시되고 있다. 특히 신경망을 이용한 공수예측 모델들이 예측력에 있어서 전통적인 모델들 보다 우수한 예측결과를 제시하고 있다. 그러나 이들 신경망 모델에 있어서도 고려되어야 할 점은 입력 데이터의 노이즈와 모델 설계 및 사용에 있어서 유연성 및 요율성 측면이 제기되고 있다. 본 연구에서는 이러한 기존의 신경망모델의 효율성 향상을 위한 새로운 방안으로 최적의 축약형 모델구조와 이에 관련된 최적 사례들을 사용하기 위한 사례기반 휴리스틱 검색기법을 제시한다. 30여개의 실제로 수행된 프로젝트의예측결과를 통해 최적사례 기반 축약형 신경망 모델의 결과가 저통적인 COCOMO 모델 그리고 기존의 신경망 모델과 비교해서 예측력과 모델의 유연성이 좋아졌음은 알 수 있었다. 따라서 본 연구에서 새롭게 제시한 축약형 모델과 최적사례기반 접근 방법은 급변하는 정보시스템 패러다임하에서도 유용하게 사용될 수있을 것이다.있을 것이다.

  • PDF

UML 객체지향 분석모델의 완전성 및 일관성 진단을 위한 시나리오기반 검증기법 (Scenario-Driven Verification Method for Completeness and Consistency Checking of UML Object-Oriented Analysis Model)

  • 조진형;배두환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권3호
    • /
    • pp.211-223
    • /
    • 2001
  • 본 논문에서 제안하는 시나리오기반 검증기법의 목적은 UML로 작성된 객체지향 분석모델의 완전성 및 일관성을 진단하는 것이다. 검증기법의 전체 절차는 요구분석을 위한 Use Case 모델링 과정에서 생성되는 Use Case 시나리오와 UML 분석모델로부터 역공학적 방법으로 도출된 객체행위 시나리오와의 상호참조과정 및 시나리오 정보트리 추적과정을 이용하여 단계적으로 수행된다. 본 검증절차를 위하여 우선, UML로 작성된 객체지향 분석모델들은 우선 정형명세언어를 사용하여 Use Case 정형명세로 변환하다. 그 다음에, Use Case 정형명세로부터 해당 Use Case 내의 객체의 정적구조를 표현하는 시나리오 정보트리를 구축하고, Use Case 정형명세 내에 포함되어 있는 객체 동적행위 정보인 메시지 순차에 따라 개별 시나리오흐름을 시나리오 정보트리에 표현한다. 마지막으로 시나리오 정보트리 추적과 시나리오 정보 테이블 참조과정을 중심으로 완전성 및 일관성 검증작업을 수행한다. 즉, 검증하고자 하는 해당 Use Case의 시나리오 정보트리를 이용한 시나리오 추적과정을 통해 생성되는 객체행위 시나리오와 요구분석 과정에서 도출되는 Use Case 시나리오와의 일치여부를 조사하여 분석모델과 사용자 요구사양과의 완전성을 검사한다. 그리고, 시나리오 추적과정을 통해 수집되는 시나리오 관련종보들을 가지고 시나리오 정보 테이블을 작성한 후, 분석과정에서 작성된 클래스 관련정보들의 시나리오 포함 여부를 확인하여 분석모델의 일관성을 검사한다. 한편, 본 논문에서 제안하는 검증기법의 효용성을 증명하기 위해 대학의 수강등록시스템 개발을 위해 UML을 이용해 작성된 분석모델을 특정한 사례로써 적용하여 보았다. 프로세싱 오버헤드 및 메모리와 대역폭 요구량 측면에서 MARS 모델보다 유리함을 알 수 있었다.과는 본 논문에서 제안된 프리페칭 기법이 효율적으로 peak bandwidth를 줄일 수 있다는 것을 나타낸다.ore complicate such a prediction. Although these overestimation sources have been attacked in many existing analysis techniques, we cannot find in the literature any description about questions like which one is most important. Thus, in this paper, we quantitatively analyze the impacts of overestimation sources on the accuracy of the worst case timing analysis. Using the results, we can identify dominant overestimation sources that should be analyzed more accurately to get tighter WCET estimations. To make our method independent of any existing analysis techniques, we use simulation based methodology. We have implemented a MIPS R3000 simulator equipped with several switches, each of which determines the accuracy level of the

  • PDF

조선시대 의료관청의 겸교수 제도의 변화 (Changes in the Adjunct professor system of medical offices in the Joseon Dynasty)

  • 박훈평
    • 한국의사학회지
    • /
    • 제36권1호
    • /
    • pp.1-9
    • /
    • 2023
  • To be an adjunct professor(gyeomgyosu) literally means to act as an instructor while also holding a different position. Adjunct professors were initially introduced under Confucianism. Gradually, technical offices also appointed adjunct professors using Confucian-educated bureaucrats for the purpose of educating lower-level technical officials and cadets. This paper examines the history of the civil service system related to adjunct professors through the Code of Laws, and examines those who have been appointed to the public office described in various documents. This paper argues that changes in the medical office's adjunct professor system reflect changes in the national medical talent training policy. The main basis of specific recognizing medical personnel is to decouple the appointment of Confucian scholars from that of full-time doctors. The replacement of the role of medical educators from Confucian scholars to full-time doctors was largely accomplished during the reign of King Jungjong(中宗) and was completed during the period of King Injo(仁祖). The time when Euiyakdongcham was created and the Office of Euiyakdongcham was established coincided with the period when the adjunct professor was disrupted in the medical office. However, this change in the adjunct professor system of medical authorities is in contrast to interpretation, which is a representative technical field. In the case of interpretation, Moonshin's sayeogwon position as adjunct professor was maintained even in the late Joseon Dynasty, and apart from this, there was a hanhagmunsin in Seungmunwon. Interpreter families had institutional arrangements that prevented them from making interpretation their own monopoly. Therefore, families of medical bureaucrats had more room for institutional growth than those of bureaucratic interpreters. Of course, these institutional devices did not prevent the growth of interpreting bureaucratic families in the late Joseon Dynasty. However, the situation in which medicine was accepted only as a kind of knowledge, not as an object of full-time work for sadaebue, would have been an opportunity to rise for those in technical jobs who were full-time medicine. As medicine became more differentiated and developed in the late Joseon Dynasty, medical knowledge and the knowledge about the medical profession became more important. The politicians could not avoid the use of a philosophically oriented system in which a confucian-educated bureaucrat equipped with only Confucian knowledge might replace a full-time doctor. Thus, the contradiction between the reality and the ideal of ignoring or denying reality was reproduced like other Confucian-centered societies. These contradictions have implications for us living in the modern age. Establishing the relationship between philosophy (or belief) and technology should not end with the superiority of one side or the other.

UML을 활용한 컴포넌트 기반의 GIS 개발방법론에 관한 연구 (A Study on the Component-based GIS Development Methodology using UML)

  • 박태옥;김계현
    • 한국공간정보시스템학회 논문지
    • /
    • 제3권2호
    • /
    • pp.21-43
    • /
    • 2001
  • 오늘날 GIS 영역을 포함하는 정보시스템 개발 환경은 소프트웨어의 복잡성 및 다양성 그리고 분산처리 및 네트워크 컴퓨팅 등의 측면에서 과거에 비해 현저하게 변화되었다. 이에 신속하게 대응하기 위하여 소프트웨어 개발 패러다임에 변화가 일어나고 있으며 객체지향기술에 바탕을 둔 컴포넌트 기반 개발이 대세로 자리잡고 있다. GIS 개발에서도 국내외적으로 관련 표준 지침을 만들어 컴포넌트에 기반한 개발을 독려하고, 앞으로 컴포넌트 기술의 적용이 증가하는 추세이다. 이러한 추세에 부응하여 GIS를 위한 컴포넌트 기반개발 방법론의 필요성이 대두되나 아직 연구가 충분히 이루어지지 못하는 실정이다. 본 연구는 UML을 활용한 컴포넌트 기반의 GIS 개발 방법론(ATOM Advanced Technology Of Methodology for GIS)의 프로세스의 제안과 함께 사례연구를 통하여 이의 적용가능성을 확인하는 것이다. ATOM은 컴포넌트 개발 그 자체를 지원할 뿐만 아니라 식별된 컴포넌트와 기존 재사용 가능한 컴포넌트에 바탕을 둔 소프트웨어 개발 생명주기 전체 단계를 지원하는 전사적인 GIS 구축 방법론이다. ATOM은 생명 주기 각 단계에 대한 주요 활동과 각각의 활동을 수행하기 위한 작업들을 정의하였다. 또한 작업간 입력물과 출력물을 제시하고, 각종 문서화를 위한 표준 양식과 항목을 제시하며 작업들의 성공적 수행을 위한 상세한 지침을 제시하여 최대한 방법론의 이해를 돕고자 하였다. 무엇보다도 ATOM의 가장 중요한 특징은 단순한 기능과 최소의 크기, 최대의 재사용을 위한 컴포넌트 추출에 목적을 두고 GIS 도메인의 여러 특징을 고려한 GIS를 위한 컴포넌트 기반의 개발방법론이라 할 수 있다. ATOM의 사례 적용은 재사용 및 상호운용성이 뛰어난 컴포넌트의 추출과 함께 보다 체계적이고 구체적인 개발 가이드 라인을 제공하여 응용GIS 구축의 생산성 및 품질 향상에 기여할 뿐만 아니라 우리의 최종목표인 GIS 소프트웨어 자동 생산에도 크게 기여할 것으로 사료된다.

  • PDF

U-마켓에서의 사용자 정보보호를 위한 매장 추천방법 (A Store Recommendation Procedure in Ubiquitous Market for User Privacy)

  • 김재경;채경희;구자철
    • Asia pacific journal of information systems
    • /
    • 제18권3호
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.