• Title/Summary/Keyword: Object-based visual representation

Search Result 39, Processing Time 0.025 seconds

Object Tracking with Sparse Representation based on HOG and LBP Features

  • Boragule, Abhijeet;Yeo, JungYeon;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.11 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Visual object tracking is a fundamental problem in the field of computer vision, as it needs a proper model to account for drastic appearance changes that are caused by shape, textural, and illumination variations. In this paper, we propose a feature-based visual-object-tracking method with a sparse representation. Generally, most appearance-based models use the gray-scale pixel values of the input image, but this might be insufficient for a description of the target object under a variety of conditions. To obtain the proper information regarding the target object, the following combination of features has been exploited as a corresponding representation: First, the features of the target templates are extracted by using the HOG (histogram of gradient) and LBPs (local binary patterns); secondly, a feature-based sparsity is attained by solving the minimization problems, whereby the target object is represented by the selection of the minimum reconstruction error. The strengths of both features are exploited to enhance the overall performance of the tracker; furthermore, the proposed method is integrated with the particle-filter framework and achieves a promising result in terms of challenging tracking videos.

Visual Sentences for Educational Math Games

  • Chang, Hee-Dong
    • 한국게임학회지
    • /
    • v.8 no.1
    • /
    • pp.32-38
    • /
    • 2011
  • The help or guide sentences of educational math games which use mathematical statements need to represent graphical forms for the learners of the game generation whose cognitive style is graphic first. In this paper, we proposed an object-based visual representation method for mathematical statements. It has object-based description rules to use graphical symbols and mathematical symbols with text words. It is easy to describe or to understand accurately mathematical meaning and is also fast for learners to read for understanding. The proposed method is good for learners of the game generation to get the help as scaffolding for learning math by educational games.

  • PDF

Image-based Surfel Reconstruction by LDI Plane Sweeping (LDI 평면 이동에 의한 이미지 기반 Surfel 복원)

  • Lee, Jung;Kim, Chang-Hun
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.947-954
    • /
    • 2009
  • This paper proposes a novel method that reconstructs a surfel-based object by using visual hull from multiple images. The surfel is a point primitive that effectively approximates point-set surface. We create the surfel representation of an object from images by combining the LDC(Layered Depth Cube) surfel sampling with the concept of visual hull that represents the approximated shape from input images. Because the surfel representation requires relatively smaller memory resources than the polygonal one and its LDC resolution is freely changed, we can control the reconstruction quality of the target object and acquire the maximal quality on the given memory resource.

Representation of women in visual representation system of fashion photography structuralized by male gaze (남성적 응시에 의해 구조화되는 패션사진의 시각적 재현체제에 기반 한 여성의 재현)

  • Lee, Younghee;Yim, Eunhyuk
    • The Research Journal of the Costume Culture
    • /
    • v.23 no.6
    • /
    • pp.1038-1050
    • /
    • 2015
  • This study is a theoretical research to investigate a methodological framework for analyzing the representation of women in fashion photography. For this study, this article attempts to develop a conceptual framework of the visual representation system through Lacan's gaze theory, and analyze the representational aspects of women configured by gendered characteristics in the visual representation system. Structuralizing the visual representation system based on that theory, the gaze, the image/screen, and the subject of representation in the Lacan's triangle diagram are replaced by the camera as the signifier of gaze, the representational image, and the seeing subject respectively. In the visual representation system, the camera creates a male-oriented visual field and structures a relationship of gendered power between male gaze as the seeing subject and female eye as an object to be seen. Looking into the representational aspects of women in this visual representation system structuralized by male gaze, women are represented in a way that reflects male desire through masquerade to comply with the patriarchal gaze, or differences that emphasizes the uniqueness and autonomy of women released from a patriarchal discourse. This study would be significant in that it provides theoretical basis for an analytic approach to the representation of women in fashion photography which we accept as a fixed one through the ideology of naturalization.

Task Planning Algorithm with Graph-based State Representation (그래프 기반 상태 표현을 활용한 작업 계획 알고리즘 개발)

  • Seongwan Byeon;Yoonseon Oh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.196-202
    • /
    • 2024
  • The ability to understand given environments and plan a sequence of actions leading to goal state is crucial for personal service robots. With recent advancements in deep learning, numerous studies have proposed methods for state representation in planning. However, previous works lack explicit information about relationships between objects when the state observation is converted to a single visual embedding containing all state information. In this paper, we introduce graph-based state representation that incorporates both object and relationship features. To leverage these advantages in addressing the task planning problem, we propose a Graph Neural Network (GNN)-based subgoal prediction model. This model can extract rich information about object and their interconnected relationships from given state graph. Moreover, a search-based algorithm is integrated with pre-trained subgoal prediction model and state transition module to explore diverse states and find proper sequence of subgoals. The proposed method is trained with synthetic task dataset collected in simulation environment, demonstrating a higher success rate with fewer additional searches compared to baseline methods.

Structurally Enhanced Correlation Tracking

  • Parate, Mayur Rajaram;Bhurchandi, Kishor M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4929-4947
    • /
    • 2017
  • In visual object tracking, Correlation Filter-based Tracking (CFT) systems have arouse recently to be the most accurate and efficient methods. The CFT's circularly shifts the larger search window to find most likely position of the target. The need of larger search window to cover both background and object make an algorithm sensitive to the background and the target occlusions. Further, the use of fixed-sized windows for training makes them incapable to handle scale variations during tracking. To address these problems, we propose two layer target representation in which both global and local appearances of the target is considered. Multiple local patches in the local layer provide robustness to the background changes and the target occlusion. The target representation is enhanced by employing additional reversed RGB channels to prevent the loss of black objects in background during tracking. The final target position is obtained by the adaptive weighted average of confidence maps from global and local layers. Furthermore, the target scale variation in tracking is handled by the statistical model, which is governed by adaptive constraints to ensure reliability and accuracy in scale estimation. The proposed structural enhancement is tested on VTBv1.0 benchmark for its accuracy and robustness.

A Study on the Visual System of Object - Oriented Based on Abstract Information (객체지향을 기반으로한 추상화 정보의 시각화 시스템에 대한 연구)

  • Kim, Haeng-Kon;Han, Eun-Ju;Chung, Youn-Ki
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2434-2444
    • /
    • 1997
  • As software industry progresses, the necessity of visual information have increased more than text-oriented information. So, automatic tools are required to satisfy a user's desire for visual design representation of various source information in the real-world. In this paper, we discuss the methodology and tools for parsing abstract information through semantic analysis and extracting visual information through visual mapping. Namely, as to abstract informations are represented as relational structure and then mapped into visual structure using regular rule, user can obtain visual information. We suggest VOLS(Visual Object Layout System) to transform a abstract information to visual information. It can improve user understandability and assist a maintenance for existing source code.

  • PDF

A robust Correlation Filter based tracker with rich representation and a relocation component

  • Jin, Menglei;Liu, Weibin;Xing, Weiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5161-5178
    • /
    • 2019
  • Correlation Filter was recently demonstrated to have good characteristics in the field of video object tracking. The advantages of Correlation Filter based trackers are reflected in the high accuracy and robustness it provides while maintaining a high speed. However, there are still some necessary improvements that should be made. First, most trackers cannot handle multi-scale problems. To solve this problem, our algorithm combines position estimation with scale estimation. The difference from the traditional method in regard to the scale estimation is that, the proposed method can track the scale of the object more quickly and effective. Additionally, in the feature extraction module, the feature representation of traditional algorithms is relatively simple, and furthermore, the tracking performance is easily affected in complex scenarios. In this paper, we design a novel and powerful feature that can significantly improve the tracking performance. Finally, traditional trackers often suffer from model drift, which is caused by occlusion and other complex scenarios. We introduce a relocation component to detect object at other locations such as the secondary peak of the response map. It partly alleviates the model drift problem.

Enhanced Representation for Object Tracking (물체 추적을 위한 강화된 부분공간 표현)

  • Yun, Frank;Yoo, Haan-Ju;Choi, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.408-410
    • /
    • 2009
  • We present an efficient and robust measurement model for visual tracking. This approach builds on and extends work on subspace representations of measurement model. Subspace-based tracking algorithms have been introduced to visual tracking literature for a decade and show considerable tracking performance due to its robustness in matching. However the measures used in their measurement models are often restricted to few approaches. We propose a novel measure of object matching using Angle In Feature Space, which aims to improve the discriminability of matching in subspace. Therefore, our tracking algorithm can distinguish target from similar background clutters which often cause erroneous drift by conventional Distance From Feature Space measure. Experiments demonstrate the effectiveness of the proposed tracking algorithm under severe cluttered background.

  • PDF

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.