• Title/Summary/Keyword: Object surveillance

Search Result 380, Processing Time 0.025 seconds

Real-Time Object Tracking Algorithm based on Minimal Contour in Surveillance Networks (서베일런스 네트워크에서 최소 윤곽을 기초로 하는 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Park, Yang-Jae
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.337-343
    • /
    • 2014
  • This paper proposes a minimal contour tracking algorithm that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. This algorithm perform detection for object tracking and when it transmit image data to server from camera, it minimized communication load by reducing quantity of transmission data. This algorithm use minimal tracking area based on the kinematics of the object. The modeling of object's kinematics allows for pruning out part of the tracking area that cannot be mechanically visited by the mobile object within scheduled time. In applications to detect an object in real time,when transmitting a large amount of image data it is possible to reduce the transmission load.

The Study on the Fire Monitoring Dystem for Full-scale Surveillance and Video Tracking (전방위 감시와 영상추적이 가능한 화재감시시스템에 관한 연구)

  • Baek, Dong-hyun
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.40-45
    • /
    • 2018
  • The omnidirectional surveillance camera uses the object detection algorithm to level the object by unit so that broadband surveillance can be performed using a fisheye lens and then, it was a field experiment with a system composed of an omnidirectional surveillance camera and a tracking (PTZ) camera. The omnidirectional surveillance camera accurately detects the moving object, displays the squarely, and tracks it in close cooperation with the tracking camera. In the field test of flame detection and temperature of the sensing camera, when the flame is detected during the auto scan, the detection camera stops and the temperature is displayed by moving the corresponding spot part to the central part of the screen. It is also possible to measure the distance of the flame from the distance of 1.5 km, which exceeds the standard of calorific value of 1 km 2,340 kcal. In the performance test of detecting the flame along the distance, it is possible to be 1.5 km in width exceeding $56cm{\times}90cm$ at a distance of 1km, and so it is also adaptable to forest fire. The system is expected to be very useful for safety such as prevention of intrinsic or surrounding fire and intrusion monitoring if it is installed in a petroleum gas storage facility or a storing place for oil in the future.

A Methodology for Making Military Surveillance System to be Intelligent Applied by AI Model (AI모델을 적용한 군 경계체계 지능화 방안)

  • Changhee Han;Halim Ku;Pokki Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.57-64
    • /
    • 2023
  • The ROK military faces a significant challenge in its vigilance mission due to demographic problems, particularly the current aging population and population cliff. This study demonstrates the crucial role of the 4th industrial revolution and its core artificial intelligence algorithm in maximizing work efficiency within the Command&Control room by mechanizing simple tasks. To achieve a fully developed military surveillance system, we have chosen multi-object tracking (MOT) technology as an essential artificial intelligence component, aligning with our goal of an intelligent and automated surveillance system. Additionally, we have prioritized data visualization and user interface to ensure system accessibility and efficiency. These complementary elements come together to form a cohesive software application. The CCTV video data for this study was collected from the CCTV cameras installed at the 1st and 2nd main gates of the 00 unit, with the cooperation by Command&Control room. Experimental results indicate that an intelligent and automated surveillance system enables the delivery of more information to the operators in the room. However, it is important to acknowledge the limitations of the developed software system in this study. By highlighting these limitations, we can present the future direction for the development of military surveillance systems.

Multi Modal Sensor Training Dataset for the Robust Object Detection and Tracking in Outdoor Surveillance (MMO (Multi Modal Outdoor) Dataset) (실외 경비 환경에서 강인한 객체 검출 및 추적을 위한 실외 멀티 모달 센서 기반 학습용 데이터베이스 구축)

  • Noh, DongKi;Yang, Wonkeun;Uhm, Teayoung;Lee, Jaekwang;Kim, Hyoung-Rock;Baek, SeungMin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1006-1018
    • /
    • 2020
  • Dataset is getting more import to develop a learning based algorithm. Quality of the algorithm definitely depends on dataset. So we introduce new dataset over 200 thousands images which are fully labeled multi modal sensor data. Proposed dataset was designed and constructed for researchers who want to develop detection, tracking, and action classification in outdoor environment for surveillance scenarios. The dataset includes various images and multi modal sensor data under different weather and lighting condition. Therefor, we hope it will be very helpful to develop more robust algorithm for systems equipped with difference kinds of sensors in outdoor application. Case studies with the proposed dataset are also discussed in this paper.

Person Re-identification using Sparse Representation with a Saliency-weighted Dictionary

  • Kim, Miri;Jang, Jinbeum;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.262-268
    • /
    • 2017
  • Intelligent video surveillance systems have been developed to monitor global areas and find specific target objects using a large-scale database. However, person re-identification presents some challenges, such as pose change and occlusions. To solve the problems, this paper presents an improved person re-identification method using sparse representation and saliency-based dictionary construction. The proposed method consists of three parts: i) feature description based on salient colors and textures for dictionary elements, ii) orthogonal atom selection using cosine similarity to deal with pose and viewpoint change, and iii) measurement of reconstruction error to rank the gallery corresponding a probe object. The proposed method provides good performance, since robust descriptors used as a dictionary atom are generated by weighting some salient features, and dictionary atoms are selected by reducing excessive redundancy causing low accuracy. Therefore, the proposed method can be applied in a large scale-database surveillance system to search for a specific object.

Activated Viewport based Surveillance Event Detection in 360-degree Video (360도 영상 공간에서 활성 뷰포트 기반 이벤트 검출)

  • Shim, Yoo-jeong;Lee, Myeong-jin
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.770-775
    • /
    • 2020
  • Since 360-degree ERP frame structure has location-dependent distortion, existing video surveillance algorithms cannot be applied to 360-degree video. In this paper, an activated viewport based event detection method is proposed for 360-degree video. After extracting activated viewports enclosing object candidates, objects are finally detected in the viewports. These objects are tracked in 360-degree video space for region-based event detection. The proposed method is shown to improve the recall and the false negative rate more than 30% compared to the conventional method without activated viewports.

Real-Time Motion Estimation Algorithm for Mobile Surveillance Robot (모바일 감시 로봇을 위한 실시간 움직임 추정 알고리즘)

  • Han, Cheol-Hoon;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2009
  • This paper presents the motion estimation algorithm on real-time for mobile surveillance robot using particle filter. the particle filter that based on the monte carlo's sampling method, use bayesian conditional probability model which having prior distribution probability and posterior distribution probability. However, the initial probability density was set to define randomly in the most of particle filter. In this paper, we find first the initial probability density using Sum of Absolute Difference(SAD). and we applied it in the partical filter. In result, more robust real-time estimation and tracking system on the randomly moving object was realized in the mobile surveillance robot environments.

Context-aware Video Surveillance System

  • An, Tae-Ki;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2012
  • A video analysis system used to detect events in video streams generally has several processes, including object detection, object trajectories analysis, and recognition of the trajectories by comparison with an a priori trained model. However, these processes do not work well in a complex environment that has many occlusions, mirror effects, and/or shadow effects. We propose a new approach to a context-aware video surveillance system to detect predefined contexts in video streams. The proposed system consists of two modules: a feature extractor and a context recognizer. The feature extractor calculates the moving energy that represents the amount of moving objects in a video stream and the stationary energy that represents the amount of still objects in a video stream. We represent situations and events as motion changes and stationary energy in video streams. The context recognizer determines whether predefined contexts are included in video streams using the extracted moving and stationary energies from a feature extractor. To train each context model and recognize predefined contexts in video streams, we propose and use a new ensemble classifier based on the AdaBoost algorithm, DAdaBoost, which is one of the most famous ensemble classifier algorithms. Our proposed approach is expected to be a robust method in more complex environments that have a mirror effect and/or a shadow effect.

Quantitative Evaluation on Surveillance Performance of CCTV Systems Based on Camera Modeling and 3D Spatial Analysis (카메라 모델링과 3차원 공간 분석에 기반한 CCTV 시스템 감시 성능의 정량적 평가)

  • Choi, Kyoungah;Lee, Impyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • As CCTVs are widely utilized in diverse fields, many researchers have continuously studied to improve the surveillance performances of a CCTV system. However, an quantitative evaluation approach about the surveillance performance has rarely been researched. Therefore, we set up the research for suggesting a quantitative evaluation approach to determine the effectiveness of CCTV coverages. We firstly defined the surveillance resolution as that varies according to object's positions and orientations. Based on the definition, we computed surveillance resolution values at all three-dimensional positions with the orientations of interests in the specified space. By comparing these values to the required reasonable resolution, we determined the surveillance performance index indicating how well a CCTV system monitor a target space for specific surveillance objectives. This proposed approach evaluates the surveillance performance of a CCTV system quantitatively, so as examines the CCTV system design before its installation based on precise 3D spatial analysis.

Detection using Optical Flow and EMD Algorithm and Tracking using Kalman Filter of Moving Objects (이동물체들의 Optical flow와 EMD 알고리즘을 이용한 식별과 Kalman 필터를 이용한 추적)

  • Lee, Jung Sik;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1047-1055
    • /
    • 2015
  • We proposes a method for improving the identification and tracking of the moving objects in intelligent video surveillance system. The proposed method consists of 3 parts: object detection, object recognition, and object tracking. First of all, we use a GMM(Gaussian Mixture Model) to eliminate the background, and extract the moving object. Next, we propose a labeling technique forrecognition of the moving object. and the method for identifying the recognized object by using the optical flow and EMD algorithm. Lastly, we proposes method to track the location of the identified moving object regions by using location information of moving objects and Kalman filter. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.