• Title/Summary/Keyword: Object size

Search Result 1,150, Processing Time 0.024 seconds

Development of a Robot's Visual System for Measuring Distance and Width of Object Algorism (로봇의 시각시스템을 위한 물체의 거리 및 크기측정 알고리즘 개발)

  • Kim, Hoi-In;Kim, Gab-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.88-92
    • /
    • 2011
  • This paper looks at the development of the visual system of robots, and the development of image processing algorism to measure the size of an object and the distance from robot to an object for the visual system. Robots usually get the visual systems with a camera for measuring the size of an object and the distance to an object. The visual systems are accurately impossible the size and distance in case of that the locations of the systems is changed and the objects are not on the ground. Thus, in this paper, we developed robot's visual system to measure the size of an object and the distance to an object using two cameras and two-degree robot mechanism. And, we developed the image processing algorism to measure the size of an object and the distance from robot to an object for the visual system, and finally, carried out the characteristics test of the developed visual system. As a result, it is thought that the developed system could accurately measure the size of an object and the distance to an object.

The Effects of Object Size and Travel Distance on Human Speed Perception (물체의 크기와 이동거리에 따른 속도감 변화)

  • Park, Kyung-Soo;Choi, Jeong-A;Lee, Eun-Hye
    • Journal of the Ergonomics Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • Human perceptional speed is different from its real speed. There is lack of research that the perceptional speed is different from real speed in 2-dimension, because most research of speed perception has concentrated on points and lines. This research investigates the effects of object size on speed perception. In this research, we used 2-D circular objects of the different size, 0.9, 1.8 and $3.6^{\circ}$. The objects moved 9.0, 13.5 and $18.0^{\circ}$ with three different speeds, 6.0, 9.0 and $18.0^{\circ}$/s. Six participants were exposed to the environment with standard scene(size: $1.8^{\circ}$, speed: $9.0^{\circ}$/s and travel distance: $13.5^{\circ}$). After the first scene, another scene in which the object had changed to different sizes, speeds and distances, was shown to the participants. A magnitude estimation method was used to construct a scale of the perceived speed level. The relationship between the perceived and the actual speed level was explained by Stevens's power law that the value was 0.978 with the exponent of 0.992. The size of object had an effect on the speed perception but travel distance was not. The perceptional speed of bigger object was lower than of smaller object. It showed that the degrees of perceptional speed decreased as size of object increased.

On the comparison of mean object size in M/G/1/PS model and M/BP/1 model for web service

  • Lee, Yongjin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2022
  • This paper aims to compare the mean object size of M/G/1/PS model with that of M/BP/1 model used in the web service. The mean object size is one of important measure to control and manage web service economically. M/G/1/PS model utilizes the processor sharing in which CPU rotates in round-robin order giving time quantum to multiple tasks. M/BP/1 model uses the Bounded Pareto distribution to describe the web service according to file size. We may infer that the mean waiting latencies of M/G/1/PS and M/BP/1 model are equal to the mean waiting latency of the deterministic model using the round robin scheduling with the time quantum. Based on the inference, we can find the mean object size of M/G/1/PS model and M/BP/1 model, respectively. Numerical experiments show that when the system load is smaller than the medium, the mean object sizes of the M/G/1/PS model and the M/BP/1 model become the same. In particular, when the shaping parameter is 1.5 and the lower and upper bound of the file size is small in the M/BP/1 model, the mean object sizes of M/G/1/PS model and M/BP/1 model are the same. These results confirm that it is beneficial to use a small file size in a web service.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF

Enhanced Object Recognition System using Reference Point and Size (기준점과 크기를 사용한 객체 인식 시스템 향상)

  • Lee, Taehwan;Rhee, Eugene
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.350-355
    • /
    • 2018
  • In this paper, a system that can classify the objects in the image according to their sizes using the reference points is proposed. The object is studied with samples. The proposed system recognizes and classifies objects by the size in images acquired using a mobile phone camera. Conventional object recognition systems classify objects using only object size. As the size of the object varies depending on the distance, such systems have the disadvantage that an error may occurs if the image is not acquired with a certain distance. In order to overcome the limitation of the conventional object recognition system, the object recognition system proposed in this paper can classify the object regardless of the distance with comparing the size of the reference point by placing it at the upper left corner of the image.

Efficient Tracking of a Moving Object using Optimal Representative Blocks

  • Kim, Wan-Cheol;Hwang, Cheol-Ho;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.495-502
    • /
    • 2003
  • This paper focuses on the implementation of an efficient tracking method of a moving object using optimal representative blocks by way of a pan-tilt camera. The key idea is derived from the fact that when the image size of a moving object is shrunk in an image frame according to the distance between the mobile robot camera and the object in motion, the tracking performance of a moving object can be improved by reducing the size of representative blocks according to the object image size. Motion estimations using Edge Detection (ED) and Block-Matching Algorithm (BMA) are regularly employed to track objects by vision sensors. However, these methods often neglect the real-time vision data since these schemes suffer from heavy computational load. In this paper, a representative block able to significantly reduce the amount of data to be computed, is defined and optimized by changing the size of representative blocks according to the size of the object in the image frame in order to improve tracking performance. The proposed algorithm is verified experimentally by using a two degree-of- freedom active camera mounted on a mobile robot.

Contact Detection based on Relative Distance Prediction using Deep Learning-based Object Detection (딥러닝 기반의 객체 검출을 이용한 상대적 거리 예측 및 접촉 감지)

  • Hong, Seok-Mi;Sun, Kyunghee;Yoo, Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.39-44
    • /
    • 2022
  • The purpose of this study is to extract the type, location, and absolute size of an object in an image using a deep learning algorithm, predict the relative distance between objects, and use this to detect contact between objects. To analyze the size ratio of objects, YOLO, a CNN-based object detection algorithm, is used. Through the YOLO algorithm, the absolute size and position of an object are extracted in the form of coordinates. The extraction result extracts the ratio between the size in the image and the actual size from the standard object-size list having the same object name and size stored in advance, and predicts the relative distance between the camera and the object in the image. Based on the predicted value, it detects whether the objects are in contact.

The Measurement of the Object Size using the Right-Angle Stereo Vision System (직각 스테레오 비젼 시스템을 이용한 물체 크기 측정)

  • Seo, Choon-Weon;Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.134-142
    • /
    • 2009
  • In this paper, we proposed the right-angle stereo vision system to measure the object size using a human eyesight-like, and the system is reconstructed with conventional stereo vision system. In this proposed system, the size results of objects are measured very close to the real object size, and we got the ratios 93~103[%] for the real object sizes. Therefore, the suggested right-angle stereo vision system have a high possibilities to be applied to many industrial system parts and to be used for robot system, automatic system, and etc.

Estimation of maximum object size satisfying mean response time constraint in web service environment (웹 서비스 환경에서 평균 응답 시간의 제약조건을 만족하는 최대 객체 크기의 추정)

  • Yong-Jin Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.1-6
    • /
    • 2023
  • One of the economical ways to satisfy the quality of service desired by the user in a web service environment is to adjust the size of the object. To this end, this study finds the maximum size of objects that satisfy this constraint when the mean response time is given below an arbitrary threshold for quality of service. It can be inferred that in the steady state of system, the mean response time in the deterministic model by using the round-robin will be the same as that of the queueing model following the general distribution. Based on this, analytical formulas and procedures for finding the maximum object size are obtained. As a service distribution of web traffic, the Pareto distribution is appropriate, so the maximum object size is computed by applying the M/G(Pareto)/1 model and the M/G/1/PS model using exponential distribution as computational experience. Performance evaluation through numerical calculation shows that as the shape parameter in the Pareto distribution increases, the M/G(Pareto)/1 model and M/G/1/PS model have the same maximum object size. The results of this study can be used to environments where objects can be sized for economical web service control.

Design and Development of the Magnetic Tomography System Using Two Poles Perpendicular Magnetic Field (2극 수직자계를 이용한 Magnetic Tomograpy의 설계와 제작)

  • 박은식;박관수
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.61-67
    • /
    • 2003
  • This paper describes a development of magnetic tomography system using two poles perpendicular magnetic field. In the system, the relative permeabilities of the object are detected by Hall sensors located along with tube circumference. The signals according to the size and position of the object could be separated in case the relative permeability of the object are over 10. Moreover, the size and location of the object could be determined in real time.